On Lorentzian Para-Sasakian Manifold admitting Semi- Symmetric metric connection

A.K. Srivastava and A. K. Ray

Abstract

The aim of the present chapter is to find the scalar curvature of an LP-Sasakian manifold with respect to semi symmetric metric connection and proved that if Ricci tensor with respect to connection vanishes, then manifold is η - Einstein manifold. We have also deduced a necessary condition for the manifold becomes Einstein is that A (ξ)= 0.

Keywords and Phrases: Semi-symmetric metric connection, Ricci tensor, Curvature tensor.

2000 AMS Subject Classification: 53C15,53C05.

Introduction

Let (M^n,g) be an n- dimensional Reimannian manifold of class C^∞ with metric g, A linear connection \overline{V} on (M^n,g) is said to be semi-symmetric [1], if the torsion tensor T of the connection satisfies

$$T(X,Y) = \pi(Y)X - \pi(X)Y \tag{1.1}$$

Where π is a 1 – form on M with p as associated vector field, defined as

$$\pi(X) = g(X, \rho) \tag{1.2}$$

for any vector field X on M.

A semi - symmetric metric connection $\underline{\nabla}$ is called semi-symmetric metric connection [2] if it satisfies

$$\underline{\nabla}_{\mathbf{x}}\mathbf{g} = 0 \tag{1.3}$$

Sharfuddin and Hussain [2] define a semi - symmetric metric connection in an almost contact manifold by identifying the 1- form π of (1,1) with the contact form η

$$T(X,Y) = \eta(Y) - \eta(X)Y \tag{1.4}$$

In [3] U.C De and J. Sengupta studied a semi - symmetric metric connection on a almost contact manifold satisfying the conditions (1.4) and

$$(\underline{\nabla}xT)(Y,Z) = A(\varphi X)T(Y,Z) + A(X)\varphi(T(Y,Z))$$
(1.5)

Where A is 1- form and φ is a tensor field of type (1,1)

In this paper we have studied a semi - symmetric metric connection in LP-Sasakian manifold whose torsion tensor T, satisfies the conditions (1.4) and

(1.5). In section 2, the definition of LP- Sasakian manifold with some results are given. In section 3, we find the scalar curvature with respect to semi - symmetric metric connection.

2. Preliminaries

Let M be an n - dimensional C^{∞} manifold is called Lorentzian para Sasakian manifold

[4] [5] if their exist in M a vector valued linear function ϕ , a contra - variant vector field ξ , and a covariant vector field η and a Lorentzian metric g, satisfying

$$\eta(\xi) \\
= -1.$$

$$\phi^{2} = I + \eta(X)\xi$$

$$g(\varphi X, \varphi Y) = g(X, Y + \eta(X)\eta(Y))$$

$$= \eta(X)$$

$$(0.1)$$

$$(2.2)$$

$$(2.3)$$

$$(2.3)$$

$$(2.4)$$

$$(\nabla_{x}\varphi)(Y) = g(X, Y) + \eta(X)\eta(Y) + [X + \eta(X)\xi]\eta(Y)$$

$$(2.5)$$

where ∇ is the operator of covariant differentiation with respect to Lorentzian metric g. Also in a LP- Sasakian manifold the following relations holds

$$\Phi \xi = 0, \eta(\varphi X) = 0, rank
= n - 1.$$
(2.6)

Also, an LP-Sasakian manifold M is said to be

Einstein if its Ricci tensor S is of the form

$$S(X,Y) = \mu g(X,Y) + \nu \eta(X) \eta(Y). \tag{2.7}$$

For any vector fields X, Y where μ , ν are functions on M

In [6] K. Yano obtained the relation between the connection \overline{V} and the Levi-civita

connection of space (M^n , g) and also find the relation between the curvature R and of type(1,3) as follow.

$$\underline{\nabla}_X Y = \nabla_X Y + \pi(Y) X - g(X, Y) \rho \tag{2.8}$$

And

$$\underline{R}(X,Y,Z) = R(X,Y)Z + \alpha(Y,Z)X - \alpha(Y,Z)LX - g(Y,Z)LX + g(X,Z)LY$$
(2.9)

Where $\alpha(Y, Z) = g(LY, Z)$

$$= (\nabla_{y}\pi) Z - \pi (Y)\pi(Z) + \frac{1}{2} \pi(\rho) g (Y, Z)$$
 (2.10)

The Weyl conformal curvature tensor C of type (1,3) on the manifold is defined by [3]

$$C(X,Y) = g(QY,Z)$$

= $-\frac{1}{n-1}S(Y,Z) + \frac{\lambda}{2(n-1)(n-2)}g(Y,Z)$

Curvature Tensor of the semi - symmetric metric connection in LP-Sasakian manifolds

From (1.4), we have

$$T(Y,Z) = \eta(Z)Y - \eta(Y)Z \tag{3.1}$$

Where

$$\eta(Z) = g(Z, \xi) \tag{3.2}$$

Contracting (3.1) with respect to Y, we get

$$(C,T)(Z) = (n-1)\eta(Z),$$

where (C, T) denotes contraction of T

Taking covariant differentiation with respect to ∇ we get

$$(\underline{\nabla}_{x}, C, T)(Z) = (n-1)(\nabla_{x}\eta)(Z) \tag{3.3}$$

Also from (1.5) we have

$$\left(\underline{\nabla}_{X}T\right)(Y,Z) = A(X)T(Y,Z) + A(\Phi X)\Phi(T(Y,Z))$$
(3.4)

Where A is a 1- form and Φ is a tensor field of type (1,1).

Contracting (3.4) with respect to Y, we get

$$\left(\underline{\nabla}_{X}C,T\right)(Z) = A(X)(C,T)(Z) + A(\Phi X)(C,\Phi)(Y)\eta(Z) - \eta(\Phi Z)$$

$$= (n-1)A(X)\eta(Z) + aA(\Phi X)\eta(Z)$$

$$where \quad a = (C,\Phi)(Y) \quad and \quad \eta(\Phi Z) = 0$$
(3.5)

from (3.5) and (3.3), we get

$$\left(\underline{\nabla}_{X}\eta\right)(Z) = A(X)\eta(Z) +$$

$$bA(\varphi X)\eta(Z)$$

$$b = \frac{a}{n-1}$$
(3.6)

where

Page 3

$$b = \frac{a}{n-1}$$

Also from (3.2)

$$(\underline{\nabla}_{x} \eta)(Z) + \eta (\underline{\nabla}_{x} Z) = g(\nabla x Z, \xi) + g(Z, \nabla x \xi)$$
$$(\underline{\nabla}_{x} \eta)(Z) = g(Z, \underline{\nabla}_{x} \xi)$$

Using (2.8) we get

$$(\overline{V}_{x}\eta)(Z) = g(Z, \nabla x\xi + \pi(\xi)X - \eta(X)p)$$

= $g(Z, \nabla x\xi) + \pi(\xi)g(Z, X) - \eta(X)g(Z, \rho)$

ISSN: 2455 – 1341 www.IJORET.com

$$= (\nabla_{x}\eta)(Z) + \pi(\xi)g(Z,X) - \eta(X)\pi(Z)$$
(3.7)

From (3.6) and (3.7)

$$\nabla_{x}\eta(Z) = A(X)\eta(Z) + bA(\Phi X)\eta(Z) - \pi(\xi)g(Z,X) + \eta(X)\pi(Z) \quad (3.8)$$

From (2.10) if $\pi = \eta$ and $\rho = \xi$, then

$$\alpha(X,Z) = A(X)\eta(Z) + bA(\varphi X)\eta(Z) + g(Z,X) + \frac{1}{2}(\varphi X)g(X,Z)$$
(3.9)

here
$$\alpha(X,Z) \stackrel{\text{def}}{=} g(LX,Z)$$

And $LX = A(X)\xi + bA(\varphi X)$ (3.10)
using (3.9), (3.10) in (2.9), we get

$$\begin{split} \underline{R}(X,Y,Z) &= R(X,Y)Z + A(X)\eta(Z)Y + bA(\varphi X)\eta(Z)Y + g(Z,X)Y \\ &+ \frac{1}{2}\eta(\rho)g(X,Z)Y - A(Y)\eta(Z)X - bA(\varphi X)\eta(Z)X \\ &- g(Z,Y)X - (1/2)\eta(\rho)g(Y,Z)X - g(Y,Z)A(X)\xi \\ &- g(Y,Z)bA(\varphi X)\xi - g(Y,Z)\xi - \frac{1}{2}\eta(\rho)g(Y,Z)X \\ &+ g(X,Z)A(Y)\xi + g(X,Z)bA(\varphi Y)\xi + g(X,Z)Y \\ &+ \frac{1}{2}\eta(\rho)g(X,Z)Y \end{split}$$

$$\frac{R(X,Y,Z)}{=R(X,Y)Z + A(X)Y - A(Y)X\eta(Z) + bA(\varphi X)Y - A(\varphi Y)X\eta(Z)}
+ 2g(Z,X)Y - g(Z,Y)X + g(X,Z)Y - g(Y,Z)X\eta(\rho)
+ g(X,Z)A(Y)\xi - g(Y,Z)A(X) + bg(X,Z)A(\varphi Y)\xi
- g(Y,Z)A(\varphi X)\xi$$
(3.11)

Let \underline{S} and S denote the Ricci tensor of the manifold with respect to \underline{V} and \overline{V} respectively

From (3.11), we get

$$\underline{S}(Y,Z) = S(Y,Z) + (2-n)[A(Y)\eta(Z) + bA(\varphi Y)\eta(Z) + g(Y,Z)] + g(Y,Z)[(1-n)\eta(\rho) - A(\xi)].$$
(3.12)

Again from (3.12), we get

$$\underline{r} = r + (1 - n) [2A(\xi) + n\eta(p)] + n(2 - n)$$
 (3.13)

ISSN: 2455 – 1341 **www.IJORET.com**

Theorem (3.1) The scalar curvature with respect to semi - symmetric metric connection ∇ of an LP - Sasakian manifold admitting a semi symmetric metric connection is given by (3.13)

$$\underline{r} = r + (1 - n) [2A(\xi) + n\eta(p)] + n(2 - n)$$

Corollary (3.1): The Ricci tensors S of the manifold with respect to semi symmetric metric connection in an LP – Sasakian manifold is symmetric if and only if

$$\eta(Z)[A(Y) + bA(\varphi Y)] = \eta(Y)[A(Z) + bA(\varphi Z)]$$
(3.14)

In particular S = 0 Then from (3.12), we get

$$S(Y,Z) = g(Y,Z)[A(\xi) - (n-1)\eta(\rho)] - (2-n)[A(Y) + bA(\varphi Y)]\eta(Z)$$

$$+ g(Y,Z).$$
 (3.15)

Putting $Z = \xi$ in (3.14) and using in (3.15)

$$S(Y,Z) = g(Y,Z)[A(\xi) - (n-1)\eta(\rho)] + (2-n)\eta(Y)\eta(Z)A(\xi) - (2-n)g(Y,Z)$$
(3.16)

If $\underline{S} = 0$ then $\underline{r} = 0$ then from (3.13) we get

$$A(\xi) = \frac{1}{2(n-1)}[(r-n(n-1)\eta(\rho)-n(n-2)]$$

$$S(Y,Z) = \frac{r - (3n^2 - 5n + 2)\eta(\rho) + n^2 - 4n + 4}{2(n-1)}g(Y,Z) + \frac{2 - n}{2(n-1)}[r - 2(n-1)^2\eta(\rho) - 2(n-1)(2-n)]\eta(Y)\eta(Z)$$

$$S(Y,Z) = \mu g(Y,Z) + \nu \eta(Y)n(Z)$$

Where
$$\mu = \frac{r - (3n^2 - 5n + 2)\eta(\rho) + n^2 - 4n + 4}{2(n-1)}$$

And

$$v = \frac{2-n}{2(n-1)}[r-2(n-1)^2\eta(\rho)-2(n-1)(2-1)]$$

Which is η – Einstein manifold.

Theorem (3.2) If the Ricci tensor of an LP – Sasakian manifold with respect to the semi – symmetric metric connection vanishes , then the manifold reduces to η – Einstein manifold .

4. Weyl Conformal Curvature Tensor.

The Weyl conformal curvature tensor of type (1,3) in an LP – sasakian manifold with respect to connection is defined by

$$\underline{C}(X,Y,Z)
= \underline{R}(X,Y,Z) + \underline{\lambda}(Y,Z)X - \underline{\lambda}(X,Z)Y
+ \underline{g}(Y,Z)\underline{Q}X - \underline{g}(X,Z)\underline{Q}Y$$
(4.1)

where

$$\underline{\lambda}(Y,Z) = g(QY,Z)$$

$$= \frac{1}{n-1} \underline{S}(Y,Z)$$

$$+ \frac{\underline{r}}{2(n-1)(n-2)} g(Y,Z) \tag{4.2}$$

If in particular S=0, then r=0, Then from (4.2), we get

$$\lambda(Y,Z) = 0 \tag{4.3}$$

using this fact in (4.1), we get

$$C(X,Y)Z = R(X,Y)Z$$

Theorem (4.1) If the Ricci tensor of an LP – Sasakian manifold with respect to semi – symmetric metric connection vanishes, then Weyl conformal curvature tensor with respect to connection $\underline{\nabla}$ is equal to the curvature tensor of the manifold with respect to connection $\underline{\nabla}$ Again from (3.11), we get

$$\underline{R}(X,Y)Z) + \underline{R}(Y,Z)X + \underline{R}(Z,X)Y
= \{A(Y) + bA(\varphi Y)\}\{\eta(X)Z - g(Z,X)\xi\}
-\{A(Z) + bA(\varphi Z)\}\{(\eta(X)Y - g(Y,X)\xi\}
+A(Z) + bA(\varphi Z)\eta(Y)X - g(X,Y)\xi
-\{A(X) + bA(\varphi X)\}\}\eta(Y)Z - g(Z,Y)\xi
+\{A(X) + bA(\varphi X)\}\}\{\eta(Z)Y - g(Y,Z)\xi\}
-A(Y) + bA(\varphi Y)\eta(Z)X - g(X,Z)\xi$$
(4.4)

If we assume that \underline{S} is symmetric Then (3.14) holds putting $Z = \xi$ in (3.14), we get

$$A(Y) + bA(\varphi Y) = -\eta(Y)A(\xi) \tag{4.5}$$

Using this result in (4.4), we get
$$\underline{R}(X,Y)Z) + \underline{R}(Y,Z)X + \underline{R}(Z,X)Y = 0. \tag{4.6}$$
Conversely, if (4.6) holds, them from (4.4)
$$[A(X) + bA(\varphi X)\eta(Z)Y - \eta(Y)Z] + [A(Y) + bA(\varphi Z)\eta(X)Z - \eta(Z)X] + [A(Z) + bA(\varphi Z)\eta(Y)X - \eta(X)Y] = 0 \tag{4.7}$$
Contracting w. r. to X, we get
$$\eta(Y)A(Z) + bA(\varphi Z)) = \eta(Z)\{(A(Y) + bA(\varphi Y))\}$$

putting
$$Z = \xi$$
 in above, we get
$$A(Y) + bA(\varphi Y) = -\eta(Y)A(\xi) \tag{4.8}$$

We state the theorem:

Theorem (4.2): The necessary and sufficient condition for the Ricci tensor of an LP - Sasakian manifold with respect to semi - symmetric metric connection ∇ to be symmetric is

$$\underline{R}(X,Y)Z) + \underline{R}(Y,Z)X + \underline{R}(Z,X)Y = 0$$
Now, if $\underline{R} = 0$ then from (3.11), we get
$$S(Y,Z) = (2 - n)\eta(Y)\eta(Z)A(\xi) - (2 - n)g(Y,Z) - (1 - n)g(Y,Z)\eta(\rho) + g(Y,Z)A(\xi)$$

$$S(Y,Z) = g(Y,Z)[n - 2 + \eta(\rho)(n - 1)] + (2 - n)\eta(Y)\eta(Z)A(\xi) + g(Y,Z)A(\xi)$$
(4.9)

From (4.9), it follows that

$$S(Y,Z) = g(Y,Z)[n-2+\eta(\rho)(n-1)]$$

If A (ξ) = 0 Thus, we state the theorem:

Theorem (4.3) If the curvature tensor R of an LP - Sasakian manifold . with respect to the semi symmetric metric connection ∇ vanishes, then the necessary conditions for the manifold becomes Einstein manifold is A (ξ) = 0.

References

- 1. Agashe, N.S. and Chafle, M.R, A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Applied Maths 23(1992)399-409
- 2. A. Sharfuddin and Hussain S.I, Semi-symmetric metric connection in almost cantact manifold, Tensor N.S.30(1976) 133-139
- 3. De U.C. and Sengupta, J., On a type of semi-symmetric metric connection on an almost contact metric manifold, FACTA Universitates (NIS)ser. math. inform. 16(2001),87-96

- 4. Matsumoto, K., On Lorentzian para -contact manifolds, Bull. of Yamagata univ.Nat.sci.12(2)(1989),151-156
- 5. Mihai, I and Rosca, R., On Lorentzian P- sasakian manifolds, classical analysis (Kazimierz dolny) (1971)155-169 world scientific, Singapur 1992, MR.93e.53076
- 6. Yano, K. On Semi-symmetric connection, Rev, Roumaine math. pures appl.15(1970),1570-1586MR 0275321(43# 1078)
- 7. Prasad, B. and Ojha, R.H. (1994). On a Semi -symmetric non metric connection in almost Grayan manifold, Bull.Cal.Math.Soc.86,213-220.
- 8. Srivastava, S.K. (2004). Semi- symmetric non metric connection on a manifold with generalized structure, Journal of Ravi shanker Uni.15-16,49-58

Department of Mathematics M.G.P.G. College, Gorakhpur, India.

Email. address: ajayddumath@gmail.com

Department of Mathematics M.G.P.G. College, Gorakhpur, India.

Email. address: amit ray786@yahoo.com

9. Prasad.B and Ojha .R.H.(1994).On a semi -symmectric non metric