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I. INTRODUCTION
Medical Imaging Informatics encompasses the
application of information and communication
technologies (ICT) to the field of medical imaging,
playing a pivotal role in the delivery of healthcare
services. Over the last three decades, a diverse
spectrum of multidisciplinary medical imaging
services has emerged, ranging from basic medical
procedures to more in-depth research into human
physiology and pathophysiology. Medical imaging
informatics encompasses the entire imaging chain.
It reaches out from picture creation and securing,
through conveyance and the executives, stockpiling
and recovery, to handling, examination, and
cognizance. Moreover, it incorporates
representation, information route, understanding,

revealing, and correspondence, filling in as an
integrative impetus that shapes a significant
scaffold among imaging and other clinical
disciplines. As per SIIM, the overall goal of clinical
imaging informatics is to upgrade the productivity,
exactness, and dependability of administrations
inside the clinical endeavor, cultivating consistent
improvement in understanding consideration and
symptomatic cycles.
This paper offers a comprehensive overview of

existing concepts, sheds light on prevalent
challenges and opportunities, and explores
forthcoming trends. Aligned with the key areas
outlined in the definition of medical imaging
informatics, the subsequent sections of this paper
are structured as follows:
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• explores advancements in medical image
acquisition, highlighting key imaging modalities
commonly used in clinical settings.
• investigates evolving patterns concerning

data management and sharing within the realm of
the medical imaging big data era.
• presents evolving data processing paradigms

in radiology, offering a historical context that has
driven the widespread acceptance of AI and deep
learning analytical methods.
• offers an in-depth review of the state-of-the-

art in digital pathology.
• outlines challenges associated with 3D

reconstruction and visualization across various
application scenarios. It further addresses digital
pathology visualization challenges, followed by an
exploration of advancements in in-silico modeling
and the debate surrounding the necessity of
introducing new integrative, multicompartment
modeling approaches.
• explores the essential requirement for

integrated analytics and examines the emerging
radiogenomics paradigm relevant to both radiology
and digital pathology methodologies.
• presents concluding remarks, summarizing

key insights, and outlining future directions for the
evolving landscape of medical imaging informatics.

II. IMAGE FORMATION AND
ACQUISITION

By offering an unmatched ability to detect illnesses
through imaging of the human body and the high-
resolution visualization of cells and Histological
samples, biomedical imaging is at the forefront of a
medical revolution. The development of pictures is
accomplished through the connection of
electromagnetic waves at different frequencies
(energies) with natural tissues, barring Ultrasound,
which uses mechanical sound waves. Operating at
shorter wavelengths and higher energies, are
ionizing, while optical, MRI, and Ultrasound,
operating at longer wavelengths, fall into the
nonionizing category. This section covers a range
of imaging modalities, including X-ray, ultrasound,
magnetic resonance (MR), X-ray computed
tomography (CT), nuclear medicine, and high-
resolution microscopy [8], [9] (refer to Table 1 for

details). Figure 1 visually illustrates examples of
images produced by these diverse modalities,
showcasing the versatility and depth of biomedical
imaging capabilities.

X-beam imaging has become quite possibly of
the most broadly utilized strategy in clinical
imaging, owing to its low cost and rapid
acquisition time. This method involves passing X-
rays generated by an X-ray source through the body
and detecting the attenuated X-rays on the other
side using a detector array. The following two-
dimensional projection image, with resolutions as
fine as 100 microns, depicts forces characteristic of
the level of X-beam weakening [9].For enhanced
visibility, iodinated contrast agents are frequently
injected into specific regions, such as during
fluoroscopy to image arterial disease. Additionally,
phase-contrast X-ray imaging leverages the phase-
shifts of X-rays as they traverse through tissues,
improving soft-tissue image contrast [10]. X-ray
projection imaging has found extensive application
in cardiovascular, mammography, musculoskeletal,
and abdominal imaging, among other medical fields
[11].
Ultrasound imaging (US) operates by employing

pulses in the range of 1 to 10 MHz to noninvasively
image tissue in a cost-effective manner. The
backscattering impact of acoustic heartbeats
interfacing with inner designs is used to gauge
repeats and produce pictures. Ultrasound imaging
offers fast, constant representation, for example,
imaging blood stream in corridors through the
Doppler effect. A significant advantage of
ultrasound is the absence of ionizing radiation,
making it less unsafe to patients. Bone and air, on
the other hand, can impede sound wave propagation,
resulting in artifacts. Regardless, ultrasound
remains broadly utilized for continuous
cardiovascular and fetal imaging [11]. Contrast-
upgraded ultrasound, using infused microbubbles to
upgrade appearance in unambiguous regions, has
further developed difference and imaging exactness
in specific applications [12]. Ultrasound versatility
imaging estimates tissue solidness for virtual
palpation, and the method isn't restricted to 2D
imaging, with the reception of 3D and 4D imaging
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extending, though with decreased fleeting goal [13]
[14].
The ability of magnetic resonance (MR) imaging

to produce volumetric images with a high spatial
resolution and primarily capture signals from
hydrogen nuclei stands out [15]. This is
accomplished through the use of a remotely created
attractive field related to non-ionizing radio-
recurrence (RF) beats [1]. Broadly utilized in
different clinical applications, for example, outer
muscle, cardiovascular, and neurological imaging,
X-ray offers extraordinary delicate tissue contrast
[16], [17]. Functional MRI, a significant subfield
used to map brain functional connectivity, is now
included in the field [18].
The approach of 4D stream techniques considers

wonderful representation of stream in 3D space
over the long run [17], [21]. MR imaging has grown
and been used more frequently as a result of the
incorporation of faster scan acquisition methods
like compressed sensing, parallel imaging, and non-
Cartesian acquisitions [22, 23]. Mirroring its broad
application, in the US alone, 36 million X-ray
examines were acted in 2017 [24]. The painlessness,
absence of ionizing radiation, and the capacity to
give itemized physical and useful data add to the
getting through notoriety of MR imaging in the
clinical field.
X-ray Computed Tomography (CT) imaging also

offers volumetric scans, similar to MRI. However,
it generates a 3D image by assembling a sequence
of 2D axial slices through the body. Like MRI, it
can perform 4D scans by synchronizing with the
ECG and respiratory cycles. Modern CT scanners,
featuring advanced solid-state detectors, have
improved spatial resolutions, achieving details as
fine as 0.25 mm. Multiple detector rows enable
broader spatial coverage, and slice thicknesses can
be reduced to 0.625 mm.
An advanced approach within CT imaging is

Spectral Computed Tomography (SCT), which
utilizes multiple X-ray energy bands to generate
distinct attenuation data sets for the same organs.
This data enables material composition analysis,
contributing to a more precise diagnosis of diseases
[27]. Despite concerns about radiation dosage, due
to its excellent resolution and quick scan time, CT

is still widely used . In the United States alone,
approximately 74 million CT studies were
conducted in 2017. The continual refinement of CT
technology underscores its pivotal role in medical
imaging, offering detailed anatomical information
crucial for diagnosis and treatment planning [24],
this number will undoubtedly develop because of
CT's expanded applications in separating crisis care.

Table I: A Summary of the Characteristics of Imaging Modalities

(a) Cine-angiography X-ray (b) 4D gated planning CT

(c) Echocardiogram (d) Axial MRI slices

(e) Q SPECT lung (f) 2D slice from a 3D (g) Magnified,
Perfusion FDG-PET digitized tissue

Two common techniques in nuclear medicine are
Single Photon Emission Computed Tomography
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(SPECT) and Positron Emission Tomography
(PET). Both modalities generate 2D image slices,
providing valuable information about the
distribution and activity of the radioisotopes within
the body .The diagnosis of cancer, the study of
physiological processes at the molecular level, and
functional imaging are just a few of the medical
applications for which these methods are crucial.
Not at all like X-beam based modalities that use
transmission energy, atomic medication depends on
the imaging of gamma beams produced through the
radioactive rot of radioisotopes brought into the
body. The emitted radiation is detected by an
external camera and then reconstructed into an
image. Single Photon Emission Computed
Tomography (SPECT) and Positron Emission
Tomography (PET) are common techniques in
nuclear medicine. Both produce 2D image slices
that can be combined into a 3D volume. However,
PET imaging utilizes positron-emitting
radiopharmaceuticals that generate two gamma rays
when a released positron interacts with a free
electron. This characteristic enables PET to
generate images with a higher signal-to-noise ratio
and spatial resolution compared to SPECT.
Ultimately, the utilization of microscopy in

imagining cells and tissue areas holds critical
significance in illness determination, for example,
for biopsy or potentially careful examples.
Traditional tissue slides typically feature a single
case per slide. In this process, a patient's tissue
specimen is affixed to a glass slide and subjected to
staining. Staining plays a crucial role in enhancing
the visual representation of tissue morphology,
facilitating more accurate interpretation by
pathologists.
Normal staining techniques incorporate

Hematoxylin and Eosin (H&E), the most
predominant framework that stains cores, and
immunohistochemical staining frameworks. Light
magnifying lens use an illuminator and different
focal points to amplify tests up to 1,000x, However,
lower magnifications are often employed in tissue
pathology. This magnification capability enables
the examination of specimens at resolutions around
0.2 µm, serving as the primary tool in tissue
pathology diagnostics.

Where customary microscopy depends on the
transmission guideline to notice objects,
fluorescence microscopy presents a differentiating
approach by using the discharge of light at an
unmistakable frequency.
Two-photon fluorescence imaging takes this idea

further by utilizing two photons of comparative
frequencies to energize atoms. This creative
methodology empowers further tissue entrance and
lessens phototoxicity.
An alternative to conventional tissue slide

techniques is the Tissue Microarray (TMA)
mechanism. TMA technology empowers
researchers to extract minute cylinders of tissue
from histological sections and arrange them in a
matrix configuration on a recipient paraffin block,
enabling simultaneous analysis of hundreds of
samples [36]. TMA has gained recognition as a
potent tool, providing insights into the underlying
mechanisms of disease progression and patient
response to therapy.
In the realm of immune-oncology, TMA

technology is rapidly becoming indispensable,
complementing traditional single-case slide
approaches. TMAs can be visualized using the In
identical whole-slide scanning technologies utilized
for individual case slides.
In the field of biomedical imaging, challenges and
opportunities abound. There is a continual push for
faster acquisitions and lower radiation doses in
anatomical imaging methods. Factors in imaging
boundaries, like in-plane goal and cut thickness, not
examined here, can firmly affect picture
examination and ought to be viewed as in
calculation improvement. The substantial volume of
imaging data generated underscores the necessity
for informatics in storage, transmission, analysis,
and automated interpretation. This emphasizes the
role of big data science in enhancing data utilization
and diagnosis
III. INTEROPERABLE AND FAIR DATA
REPOSITORIES FOR REPRODUCIBLE,
EXTENSIBLE AND EXPLAINABLE
RESEARCH
Outfitting the maximum capacity of accessible

huge information for medical care development
requires a change the executive system across both
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exploration establishments and clinical locales. In
its present form, diverse healthcare data spans from
imaging to genomic information, to clinical
information.
A key approach to address the limitations

mentioned earlier is the creation of effective
Clinical Data Repositories (CDRs) that span the
entire enterprise. CDRs play a crucial role in
systematically aggregating information derived
from various sources, including (i) Electronic
Health and Medical Records (EHR/EMR, used
interchangeably); (ii) Archives in Radiology and
Pathology, relying on Picture Archive and
Communication Systems (PACS); (iii) a diverse
array of genomic sequencing devices, Cancer
Registries, and Biospecimen Repositories; and (iv)
Clinical Trial Management Systems (CTMS).
The use of the term EHR/EMR is gaining

prominence as a comprehensive umbrella term,
supplanting CDRs to incorporate the vast array of
accessible medical data. Our current study adopts
this approach, and as these systems become more
widespread.
In this pursuit, numerous clinical and research

sites have created tools for data management and
exploration with the specific goal of monitoring
patient outcomes [46].However, many of these
tools face limited adoption within the clinical and
research communities due to their reliance on
manual data entry and a lack of essential tools for
performing advanced queries. A recent shift has
emphasized the development of automated Load
(ETL) interfaces, Extraction, and Transformation
marking a significant improvement.
ETLs can seamlessly handle a comprehensive

range of genomic data, clinical information, and
imaging studies. This capability allows for the
systematic interrogation of multi-modal data,
offering objective, refining best practices, and
guiding personalized treatment approaches.
One of the main difficulties in the adoption of

Electronic Health Records (EHRs) across an entire
enterprise arises from the substantial amount of
clinical data available in unstructured or semi-
structured formats, notably within various reports
generated by third-party laboratories. To address
this challenge, some institutions opt to convert

these documents into images or PDFs for
integration into the patient's EHR. Alternatively,
certain reports are received in Health Level 7 (HL7)
format, where the clinical content is consolidated
into a continuous ASCII (American Standard Code
for Information Interchange) string.
A primary challenges in implementing Electronic

Health Records (EHRs) across an entire
organization stems from the significant volume of
clinical data present in unstructured or semi-
structured formats, particularly within reports
generated by third-party laboratories. To tackle this
issue, some institutions choose to convert these
documents into images or PDFs for incorporation
into the patient's EHR. Alternatively, certain reports
are received in Health Level 7 (HL7) format, where
the clinical content is consolidated into a
continuous ASCII string.
Successfully integrating this information into

Electronic Health Records and achieving semantic
interoperability demands the creation and
enhancement of software that conforms to
interoperability profiles and standards.
Furthermore, the adoption of clinical terminology

coding, such as Systemized Nomenclature of
Medicine-Clinical Terms (SNOMED CT) and the
International Statistical Classification of Diseases is
essential. Importantly, leading to increased
statistical power in research studies relying on
larger cohorts.
The availability of metadata information is

central in unambiguously describing processes
throughout the data handling cycle. Metadata
underpin medical dataset sharing by providing
descriptive information that characterize the
underlying data. The latter, can be further
capitalized towards joint processing of medical
datasets constructed under different context, such as
clinical practice, research and clinical trials data
[50]. A key medical imaging example concept
relevant to metadata usage comes from image
retrieval. Traditionally, image retrieval relied on
image metadata, such as keywords, tags or
descriptions. However, with the advent of machine
and deep learning AI solutions (see Section IV),
content-based image retrieval (CBIR) systems
evolved to exploiting rich contents extracted from
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images (e.g., imaging, statistical, object features,
etc.) stored in a structured manner. Today, querying
for other images with similar contents typically
relies on a content-metadata similarity metric.
Supervised, semi supervised and unsupervised
methods can be applied for CBIR extending across
imaging modalities [51].
The FAIR guiding principles initiative aims to

address (meta)data availability by providing
recommendations for making (meta)data Findable,
Reusable (FAIR) [52], Interoperable, and
Accessible. Simultaneously , Privacy-preserving
data publishing is an evolving research field
dedicated to facilitating open data sharing while
ensuring the privacy of patients., with the goal of
minimizing information loss [53]. Sharing such data
enhances the potential for discovering novel
findings and replicating existing research results
[54]. In the context of anonymizing medical
imaging data, approaches like k-anonymity [55],
[56], l-diversity [57], and t-closeness [58] are
commonly employed.
The convergence of a wide spectrum of
interconnected data elements, spanning diverse
clinical information, imaging studies, and genomic
data, coupled with the application of appropriate
data mining tools, plays a pivotal role in integrative
analytics strategies. This amalgamation creates
distinctive prospects for the progression of
precision medicine [67], [68].
IV. RADIOLOGY PROCESSING, ANALYSIS,
AND UNDERSTANDING
The integration of a wide range of interconnected
data elements, spanning diverse clinical information,
imaging studies, and genomic data, coupled with
the utilization of appropriate data mining tools, is
vital for integrative analytics approaches. This
integration creates distinctive opportunities for the
advancement of precision medicine.
Medical image analysis usually encompasses two

main objectives: outlining objects of interest
(segmentation) and characterizing labels
(classification). Examples range from delineating
the heart for cardiology to detecting cancer in
pathology images. However, progress in medical
image analysis has often been impeded by a dearth
of theoretical comprehension on the optimal

selection and handling of visual features. Ad hoc
(or hand-crafted) feature analysis approaches have
achieved partial success in certain domains by
explicitly outlining a predefined set of features and
processing steps. Nonetheless, no single method has
yielded durable, universally applicable solutions
across different domains.
The recent surge in ML approaches has

demonstrated encouraging results across various
applications. These techniques aim to comprehend
and refine parameters based on training examples.
Nevertheless, engineering these approaches can
pose challenges, as they may encounter
unforeseeable failures and are susceptible to biases
or erroneous feature identification, frequently
originating from constraints in the training dataset.
A crucial means of propelling the field forward

involves open-access challenges where participants
can assess their me thods using standardized
datasets. Prominent instances of such challenges
span diverse domains.While these challenges have
driven progress in medical image analysis, recent
analyses of challenge designs have revealed biases
that raise questions about the ease of translating
methods to clinical practice [84].
A. Feature Analysis
Numerous studies in clinical image analysis have

explored statistical modeling, signal analysis, and
other techniques [71]. Among the most successful
approaches are:
1.Multi-atlas Segmentation [85]:
This approach employs a collection of labeled

cases (atlases) chosen to capture variations within
the population. The image intended for
segmentation is aligned with each atlas, often using
techniques like voxel-based morphometry [89]. The
labels from each atlas are then combined to create a
consensus label for the target image. This method
improves robustness by averaging errors specific to
a given atlas, forming a consensus based on
maximum likelihood. A similarity metric is
subsequently employed to assess and assign
weights to candidate segmentations.
2.Active Shape Models [87]-[90]:
In this alternative approach, the object is

represented as a deformable structure, and the
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optimization of boundary positions is performed
using a similarity metric .
3.Graph Cut Algorithms [86]:

Graph cut algorithms provide a global optimal
solution, although the initial graph construction is
computationally expensive. The advantage lies in
real-time computation of updates to the weights
(interaction).
Each of these approaches contributes to the field of
medical image analysis, offering different strengths
and trade-offs in terms of computational efficiency,
robustness, and global optimization.
B. Machine Learning:

Before the emergence of deep learning, machine
learning involved framing a learning problem to
tackle a task using input data [92]. In the early
stages of machine learning, the emphasis was on
reducing data dimensionality and integrating crucial
invariances and covariances. This was
accomplished by employing handcrafted features to
represent data. In the realm of imaging data, various
transforms such as Fourier, Cosine, or Wavelet
transforms, and more recently, Gabor filters, were
employed. These transforms aimed to capture local
correlations, separate frequency components, and
offer directionality along with detailed texture
information.
In order to acquire features through a data-driven

approach, methods such as Principal Component
Analysis and Independent Component Analysis are
commonly employed, and the K-means algorithm
[94] have been utilized [93].
In the subsequent decision-making stage, a range of
algorithms was introduced. Support Vector
Machines [95] were often chosen for their simple
implementation and established nonlinear kernel
options. Alternatively, random forest methods [96]
utilized an ensemble of decision trees, enhancing
the classifier's robustness. Probabilistic boosting
trees [97] constructed a binary tree of strong
classifiers through a boosting approach.
C. Deep Learning for Segmentation:
One of the earliest applications of Convolutional
Neural Network (CNN), which is currently the most
common form of deep learning, dates back to 1995.

At that time, a CNN was utilized for the detection
of lung nodules in chest X-rays [100]. Subsequently,
driven by breakthrough outcome like those of Alex
Net [101], along with variations that include patch-
based adaptations of Deep Boltzmann Machines
and stacked autoencoders, the segmentation of
anatomy and pathology through deep learning has
undergone a revolutionary transformation (refer to
Table II for details).
This section aims to analyze key works and trends
in the area of deep learning for medical image
segmentation. For a more in-depth exploration,
readers are directed to relevant, comprehensive
reviews in [69] and [70].
The fundamental appeal of deep learning and
convolutional architectures lies in their ability to
simultaneously learn relevant features and decision
functions. While Alex Net initially established the
benchmark for categorization tasks (subsequently
extensively adapted for medical applications, as
discussed in the next subsection), it was the
recognition that classification networks could yield
dense predictions through convolutionalization that
paved the way for potent partitioning algorithms
[103].
Now a days, U-Net remains one of the most
successful and widely used architectures for
medical image partitioning.
The U-Net is an encoder-decoder network with a
bottleneck and skip connections between the
encoding and decoding layers. It is straightforward
conceptually. These skip associations empower
preparing with restricted input information and
yield exceptionally precise division limits, in spite
of the fact that it might come at the expense of a
plainly characterized idle space. Originally
designed for 2D segmentation, the 3D U-Net was
introduced in 2016, allowing full volumetric
processing of imaging data while retaining the
principles of the original U-Net [105].
Regarding picture division as a picture to-picture
interpretation and combination issue has enlivened
a few works. This approach has led to different
techniques that help solo and semi-directed learning,
frequently combined with ill-disposed preparing
[106], to improve preparing information utilizing
mark guides or info pictures from different areas.
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D. Deep Learning for Classification:
Deep learning algorithms have been widely

applied to disease classification or screening,
achieving outstanding performance in various tasks
(refer to Table II). Applications span a wide range.

Similar to segmentation tasks, convolutional
neural networks (CNNs) have significantly
improved classification tasks. Many network
architectures that have proven effective in the
ImageNet image classification challenge [117]
have been adapted for medical imaging tasks by
fine-tuning previously trained layers. Early
studies, such as [118] and [119], investigated the
possibility of using CNN-based models trained
on large natural image datasets for medical tasks.
They demonstrated that pre-training a model on
natural images and fine-tuning its parameters for
a new medical imaging task yielded excellent
results. This finding was further supported in
[120], which indicated that fine-tuning a pre-
trained model generally outperforms training
from scratch. Ensemble methods involving fine-
tuning pre-trained models have also shown strong
performance, as illustrated in [121].
However, the transfer learning approach faces

challenges when the objective involves tissue
classification in 3D image data. Transfer learning
from natural images becomes impractical without
first condensing the 3D data into two dimensions.
Various successful strategies have been proposed
to tackle this issue, including architectures
performing 3D convolutions and training
networks from scratch on 3D medical images
[122]-[126]. Other techniques involve slicing 3D
data into various 2D views before merging them
to obtain a final classification score [127]. Some
approaches utilize a 2D autoencoder to learn lung
nodule features and then utilize a decision tree for
distinguishing between benign and malignant
nodules [128, 129].
In general, regardless the preparation procedure

utilized, order errands in clinical images are
overwhelmed by some detailing of a CNN -
frequently with completely associated layers
toward the finish to play out the last
characterization. CNNs frequently have the
ability to achieve state-of-the-art performance

with abundant training data; in any case,
profound learning strategies by and large endure
with restricted preparing information. As
examined, move learning has been valuable in
adapting to sparse information, however the
proceeded with accessibility of enormous, open
datasets of clinical pictures will have a major
impact in fortifying grouping undertakings in the
clinical space.

V. RESULTS

E. CNN Interpretability
Albeit Profound CNNs have accomplished

incredibly high precision, they are as yet black-box
capabilities with numerous layers of nonlinearities.
Therefore, it is essential to have faith in these
networks' output and to be able to confirm that the
predictions are the result of learning appropriate
representations rather than overfitting the training
data. A new area of machine learning research
called "deep CNN interpretability" aims to learn
more about how the network learns and makes its
classification decisions. One straightforward
methodology comprises of picturing the closest
neighbors of picture patches in the completely
associated highlight space [101]. One more typical
methodology that is utilized to reveal insight into
the expectations of Profound CNN depends on
making saliency maps [132] and directed
backpropagation [133], [134]. Another comparable
methodology, that isn't intended for an info picture,
utilizes inclination rising streamlining to produce an
engineered picture that maximally enacts a given
neuron [135]
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TABLE II. SELECTED DEEP LEARNINGMETHODS FORMEDICAL IMAGE SEGMENTATION AND CLASSIFICATION

Year - [REF]
Author

Disease
Imaging
Data

Patients DL Method
Segmentation/
Classification

Description

1995 - [100] Lo
et al

Lung Cancer X-ray 55 2 layer CNN
Nodules detection
in a patch fashion

First ever attempt to use CNN
for medical image analysis

2015 - [104]
Ronneberger
et al Cells

Electron and
optical
microscopy 30 /35 U-net

Segmentation of
EM images and
cell tracking

Image to image tasks
architecture depicting
exceptional segmentation
performance even with
limited data

2016 - [118]
Shin et al

Interstitial Lung
Disease

CT
120
(905 slices)

Transfer learning
(AlexNet, GoogleNet,
CifarNet CNNs)

Interstitial lung
disease binary
classification

Showed that networks pre-
trained on natural image data
could be succesfully used on
medical data

2016 - [122]
Dou et al

Cerebral
Microbleeds

MRI 320

Two-stage: 1) 3D
Fully-convolutional
network (FCN), 2) 3D
CNN

3D FCN for
candidate
microbleed
detection

A two-stage system used a 3D
FCN to detect candidate
microbleeds before a 3D CNN
was applied to
reduce false positives

2016 - [127]
Setio et al

Pulmonary
Cancer

CT
888 scans,
1186
nodules

Two-stage: 1 1)
Candidate detector
with feature
engineering
2) Multi-view 2D CNN
for false positive
reduction

Detection of
potential
pulmonary
nodules.

A notable reduction in false
positives was achieved
through the fusion of multiple
2D CNNs at different views
around a nodule.

2017 - [268]
Lekadir et al

Cardiovascular
(carotid artery)

US 56 cases

Four convolutional
and three fully
connected layers

Characterization
of carotid plaque
composition

High correlation (0.90) with
plaque composition clinical
assessment for the estimation
of lipid core, fibrous cap, and
calcified tissue areas

2017 – [128]
Yu et al Melanoma

Dermoscop
ic Images

1250
images

Very deep (38/50/101
layers) fully
conv. residual network

Binary melanoma
classification

Used a very deep residual
network (16 residual blocks)
to classify melanoma

2017 - [102]
Komnitsas et al TBI, LGG/ GBM,

Stroke
MRI

61 /110/
ISLESSISS
data

11-layers, multi-scale
3D CNN with fully
connected CRF

Brain lesion
segmentation
algorithm

Top-performing segmentation
results on TBI, brain tumours,
and ischemic stroke at BRATS
and ISLES 2015 challenges

2017 - [246]
Lao et al

GBM MRI 112 Transfer learning

Necrosis,
enhancement, and
edema tumour
subregions

Overall survival prognostic
signature for patients with
GlioblastomaMultiforme
(GBM)

2017 - [247]
Oakden-
Rayner et al

Overall Survival
CT
(chest)

48

ConvNet transfer
learning (3
convolutional and 1
fully connected
layers)

Tissue (muscle,
body fat, aorta,
vertebral column,
epicardial fat,
heart, lungs)

Predict patients’ 5-year
mortality probability using
radiogenomics
data (overall survival)

2017 - [241]
Zhu et al Breast Cancer DCE-MRI 270

Transfer learning
(GoogleNet, VGGNet,
CIFAR)

Breast tumour
lesions

Discriminate between Luminal
A and other breast cancer
subtypes

2018 - [112]
Chartsias et al

Cardiovascular MRI 100 Various networks
Segmentation of
cardiac anatomy

Limited training data when
appropriate autonecoding
losses are introduced

2020 – [121]
McKinney et
al

Breast Cancer X-ray

25,856 &
3,097 cases

Ensemble and transfer
learning

Breast cancer
classification

Cancer prediction on two
large datasets with
comparison against human
readers

2019 - [170]
Hekler et al

Melanoma
Whole slide
H&E tissue
imaging

695
Transfer learning
(ResNet50)

Binary melanoma
classification

Human level performance in
discriminating between nevi
and melanoma images

US: Ultrasound; MRI: Magnetic Resonance Imaging; DCE-MRI: Dynamic Contrast Enhancement MRI; CT: Computed Tomography; PET: Positron

Emission Tomography; GBM: Glioblastoma; LGG: Lower-Grade Glioma; CNN: Convolutional Neural Networks.
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F. Interpretation and Understanding:
Once the geometry and function of objects are

quantified, the study of patient cohorts involves
analyzing the statistical variations in shape and
motion across a large number of cases. In the Multi-
Ethnic Study of Atherosclerosis, variations in heart
shape derived from MRI examinations were
correlated with established cardiovascular risk
factors [143]. Furthermore, the application of
imaging informatics methodologies in the
cardiovascular system has yielded significant
insights, enhancing our understanding of normal
function and contributing to advancements in the
comprehension of pathophysiology, diagnosis, and
treatment of cardiovascular disorders [144]. In the
field of neuroscience, atlas-based neuroinformatics
enables the extraction of new information about
structure to predict neurodegenerative diseases
[145].
At the same time, medical imaging data can offer

valuable insights into the biophysical parameters of
tissues and organs. For instance, in elastography,
tissue compliance can be estimated from the motion
of waves imaged using ultrasound or MRI [146]. In
the case of the heart, myocardial stiffness is
associated with disease processes. With knowledge
of boundary loading, imaged geometry, and
displacements, finite element analysis can be
employed to estimate material properties
compatible with the observed deformation [147]
V. PROCESSING, ANALYSIS, AND
UNDERSTANDING IN DIGITAL
PATHOLOGY
Traditionally, pathology classifications and

interpretations have relied on pathologists
examining tissue prepared on glass slides using
microscopes. However, the advent of digital
pathology has opened new avenues for in-depth
analysis.
These datasets can be correlated with specific

disease attributes, enabling the quantitative
characterization of tissue at various spatial scales.
This process, in turn, facilitates the development of
biomarkers capable of predicting outcomes and
treatment responses.
Over the past two decades, digital pathology has

made significant progress, with some sites now

utilizing whole slide imaging for primary anatomic
pathology diagnostics Certainly, The FDA
approved the utilization of a commercial digital
pathology system in clinical settings in 2017 . For a
comprehensive overview of challenges and
advancements in digital pathology, several
publications offer insightful reviews [155]-[157].
The integration of artificial intelligence-based
medical imaging systems gaining FDA approval is
summarized in Table III.
A. Segmentation and Classification:
The widespread availability of digitized

pathology images, Paired with recognized
difficulties concerning the variability in
pathologists' interpretations among different
observers [159], This has generated an increasing
interest in systems that offer computer-assisted
decision support..
One significant challenge in pathology decision

support arises from the intricate and nuanced
characteristics inherent in many pathology
classification systems. These classifications often
revolve around the percentage of the specimen
displaying specific patterns of tissue abnormality,
and assessing abnormality as well as estimating
tissue area entails subjective judgment. During the
era when interpretation relied solely on glass slides,
minimizing inter-observer variability necessitated
multiple pathologists collectively examining the
same slides and collaborating on interpretation.
The difficulties associated with pathology image

interpretation have prompted considerable
endeavors to create image analysis methods with
the goal of automating the analysis of entire
pathology slides. While only a limited number of
these methods have been integrated into clinical
practice, the outcomes are promising. It appears
highly probable that ongoing initiatives will
eventually produce successful methods for
consistently providing algorithmic second opinions
in anatomic pathology. For a thorough review of
these initiatives, please refer to [160]-[162].
In earlier efforts within this field, statistical

techniques and machine learning algorithms were
applied for the segmentation and classification of
tissue images. For example, Bamford and Lovell

http://www.ijoret.com


ISAR - International Journal of Research in Engineering Technology– Volume 9 Issue 1, 2024

ISSN: 2455 – 1341 www.IJORET.com Page 11

utilized active contours to segment nuclei in Pap
stained cell images [163]. Malpica et al. employed
watershed-based algorithms to separate nuclei in
cell clusters [164]. Kong et al. combined grayscale
reconstruction, thresholding, and watershed-based
methods in their work [165]. Gao et al. adopted a
hierarchical approach involving mean-shift and
clustering analysis [166]. In the study by Al-Kofahi
et al., graph-cuts and multiscale filtering methods
were used for the detection of nuclei and the
delineation of their boundaries [167].
Identifying malignant growth metastases

addresses a basic indicative test, and AI strategies
have been applied to resolve this issue. The
CAMELYON challenges explicitly center around
algorithmic identification and order of bosom
disease metastases in H&E entire slide lymph hub
segments [171]. The best strategies in these
difficulties ordinarily include convolutional brain
organizations, differing in network engineering,
preparing strategies, and pre-and post-handling
procedures. Over the long run, there has been
persistent improvement in the presentation of
calculations intended for the discovery, division,
and arrangement of cells and cores. These
calculations frequently assume crucial parts in
malignant growth biomarker calculations, creating
quantitative rundowns and guides connected with
the size, shape, and surface of cores, alongside
measurable portrayals of spatial connections
between various kinds of cores [172]-[176].
Characterizing nuclei presents a challenge in

terms of generalizing the task across various tissue
types, mainly due to the labor- intensive and time-
consuming process of creating ground truth datasets
for training, requiring the expertise of pathologists.
Deep learning generative adversarial networks
(GANs) have proven valuable in addressing this
challenge by assisting in the generalization of
training datasets [177].
B. Interpretation and Understanding:
There is a growing emphasis on understanding

the role of cancer-immune interactions in
influencing outcomes and responses to treatment,
particularly with the increasing prominence of
immune therapy in cancer treatment. Elevated

levels of lymphocyte infiltration have been
associated with extended disease-free survival and
improved overall survival (OS) in various cancer
types, such as early-stage triple-negative and
HER2-positive breast cancer [178, 179].
Recent efforts have utilized deep learning

algorithms to classify cancer-infiltrating
lymphocyte (TIL) regions in H&E (Hematoxylin
and Eosin) images. One study focused on
characterizing TIL regions in lung cancer, while
another, conducted within the context of the TCGA
Pan Cancer Immune group, explored various cancer
types to correlate deep learning-derived spatial TIL
patterns with molecular data and outcomes. A third
study utilized a structured crowd-sourcing method
to generate maps of cancer-infiltrating lymphocytes
[152, 181]. These investigations demonstrated
correlations between characterizations of TIL
patterns, analyzed by computerized algorithms, and
patient survival rates, highlighting the potential for
grouping patients based on subclasses of
immunotypes. These studies underscore the value
of whole-slide tissue imaging in producing
quantitative evaluations of sub-cellular data and
providing opportunities for more comprehensive
correlative studies.
While there have been advancements in

automating the assessment of TMA (Tissue
Microarray) images, numerous existing systems
face limitations. These limitations include being
closed and proprietary, not fully leveraging
advanced computer vision techniques, and not
adhering to emerging data standards. Beyond
analytical challenges, the substantial volume of data,
text, and images from even modest tissue
microarray studies presents significant
computational and data management hurdles (see
Section VI.B). Understanding the cancer immune
status through the expression of immune system-
related proteins is crucial for determining suitable
immunotherapy options. However, objectively
evaluating cancer biomarker expression poses
challenges. For instance, assessing the expression
of human leukocyte antigen (HLA) class I in the
growth epithelium is challenging due to its presence
on both cancer epithelial and stromal cells, as well
as infiltrating immune cells [182].
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Improving the flexibility and convenience of
advancing computational imaging instruments
requires addressing batch effects. Batch effects
arise from variations in the appearance of
histopathology tissue slides from different sources
due to differences in tissue preparation and staining
techniques. Predictive models have been explored
to facilitate robust learning from one domain and
directly applying it to another domain. Through
unsupervised domain adaptation, it becomes
possible to transfer discriminative knowledge from
the source domain to the target domain without the
need to re-label images in the target domain [183].
This paper primarily focuses on the analysis of

Hematoxylin and Eosin (H&E) stained tissue
images, as H&E is a primary tissue stain widely
used in histopathology for cancer diagnosis. The
analysis encompasses a significant body of research
dedicated to H&E stained tissue. While
fluorescence microscopy and immunohistochemical
techniques are employed in both research and
clinical settings to enhance the visualization of
specific morphological features, such as proteins
and macromolecules in cells and tissue samples, a
growing number of histopathology imaging projects
are now oriented towards methods for analyzing
images obtained from fluorescence microscopy and
immunostaining techniques (e.g., [186]-[192]).
In medical imaging applications involving human

tissues, the registration of slices is crucial, ideally
performed in an elastic form [195]. Feature-based
registration becomes a more suitable approach in
this context, especially when dealing with the
contours and centerline of vessels [196].
Conversely, intensity-based registration proves
effective for aligning image slices depicting
abnormal morphologies, such as cancers [197].

The selection of meshing and rendering
techniques is closely linked to the specific imaging
modality and the corresponding tissue type. Surface
rendering techniques are utilized when
reconstructing the 3D boundaries and geometry of
arteries and vessels. This process involves creating
iso-contours extracted from individual slices of
intravascular ultrasound or CT angiography.
Additionally, Non-Uniform Rational B-Splines
(NURBS) serve as an effective meshing technique
for generating and characterizing surfaces of
vascular geometric models, including aortic, carotid,
cerebral, and coronary arteries. These models play a
pivotal role in the reconstruction of aneurysms and
atherosclerotic lesions [196], [198].
On the other hand, when depicting solid tissues

and masses such as cancers, organs, and body parts,
Volume Rendering techniques like ray-casting are
commonly used. These methods enable the
visualization of the entire medical volume as a
cohesive structure, offering transparency even when
derived from image data with relatively low
contrast.
The reconstruction process, which necessitates

expert knowledge and guidance, becomes
impractical and time-consuming when analyzing
extensive sets of patient-specific cases. In such
scenarios, the use of automatic segmentation and
reconstruction systems becomes imperative.
However, a significant challenge arises from the
difficulty in achieving complete automation in the
segmentation process, attributed to variations in
imaging modalities, diverse vessel geometries, and
fluctuating image quality [199]. Efficient
algorithms for rapid segmentation and
reconstruction are crucial when dealing with a large
number of images. Approaches to address this
challenge include the utilization of parallel
algorithms for segmentation, the application of
neural networks (discussed in Sections IV-V),
multiscale processing techniques, and the
deployment of multiple computer systems, each
operating on an image in real-time.
c. Data Management, Visualization, and Processing in
Digital Pathology
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At its essence, digital pathology is fundamentally
an interactive, human-guided process that
encompasses a variety of tasks. These tasks include
labeling data for algorithm development,
visualizing images and features to refine algorithms,
interpreting findings, and aligning systems with
clinical applications. The effectiveness of digital
pathology in imaging informatics applications relies
on the ability of interactive systems to query
underlying data and manage features within the
system, along with supporting interactive
visualizations. This interactivity is crucial for the
widespread adoption of digital pathology.
A multitude of open-source tools simplify the

visualization, organization, and querying of
characteristics derived from whole slide images.
These systems also facilitate the creation of
annotations and markups for whole slide images.
One such open-source tool is the QuIP software
system [201], which enables interactive viewing of
images, image annotations, and segmentation
results presented as overlays of heatmaps or
polygons using the caMicroscope viewer [202].
FeatureScape, another tool, is a visual analytics tool
that supports interactive exploration of features and
segmentation maps and is integrated with QuIP.
Other open-source programs designed for similar
purposes include QuPath [203], the Pathology
Image Informatics Platform (PIIP) [204] for
administration, analysis, and visualization, the
Digital Slide Archive (DSA) [205], and Cytomine
[206]. These systems are tailored for whole slide
viewing, administration, and analysis and can be
used either locally (QuPath, PIIP) or online (QuIP,
caMicroscope, DSA).
The ongoing work entails developing new

instruments and techniques to facilitate the indexing
of photographed specimens using improved feature
metrics and knowledge representation. These
metrics include similarity-indexed computational
biomarkers, which provide quick searches and
extractions of comparable regions of interest from
large picture datasets. When combined, these
technologies enable researchers to analyze tissue
microarrays including huge patient cohorts in a
high-throughput manner. They make it easier to

create and test ideas, as well as to store and mine
large datasets [200].
Digital pathology algorithms are made to

function well with high-resolution pictures so that
tissue data may be used to extract certain traits.
Computational limitations may impede local
processing on an interactive workstation since
digital pathology pictures might be several
terabytes in size. Certain algorithms can function on
down sampled, lower-resolution photos that the
user has identified.
Cloud computing is also gaining traction in the

field of digital pathology due to decreasing costs,
making it an increasingly cost-effective solution for
large-scale computing. Several groups, particularly
in the genomics community, have developed
solutions for deploying genomic pipelines on the
cloud [212]-[214]. QuIP, for instance, incorporates
cloud-based pipelines for tasks like cancer-
infiltrating lymphocyte analysis and nuclear
segmentation. These pipelines are available as APIs
and deployed as containers or pipelines in a
workflow definition language (WDL), supported by
a cross-platform workflow orchestrator compatible
with multiple cloud and high-performance
computing (HPC) platforms. Handling
computerized pathology pictures presents huge
difficulties, fundamentally because of the broad size
of entire slide pictures, the variety of picture
designs, and the intermittent requirement for human
direction and mediation during handling. Endeavors
have been started to consolidate DICOM
(Computerized Imaging and Correspondences in
Medication) in advanced pathology, exemplified by
apparatuses like the Orthanc DICOMizer [207].
Handling computerized pathology pictures

presents huge difficulties, fundamentally because of
the broad size of entire slide pictures, the variety of
picture designs, and the intermittent requirement for
human direction and mediation during handling.
Endeavors have been started to consolidate DICOM
(Computerized Imaging and Correspondences in
Medication) in advanced pathology, exemplified by
apparatuses like the Orthanc DICOMizer [207],
intended to change over pyramidal tiled Altercation
records into DICOM pathology documents.
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The rise of containerization innovations like
Docker [211] has acquainted a clever methodology
with dispersing calculations and pathology
pipelines. Cloud computing is gaining prominence
in digital pathology due to decreasing costs,
rendering it an increasingly cost-effective solution
for large-scale computing. Various groups,
particularly in the genomics community, have
developed solutions for deploying genomic
pipelines on the cloud [212]-[214]. QuIP, for
example, integrates cloud-based pipelines for tasks
like cancer-infiltrating lymphocyte analysis and
nuclear segmentation. These pipelines are
accessible as APIs and deployed as containers or
pipelines in a workflow definition language (WDL),
supported by a cross-platform workflow
orchestrator compatible with multiple cloud and
high-performance computing (HPC) platforms.
While this field is still in its early stages,
widespread adoption is anticipated in the upcoming
years. Potential applications incorporate calculation
approval, sending calculations in clinical
examinations and preliminaries, and calculation
advancement, particularly in frameworks utilizing
move learning.
VII. INTEGRATIVE ANALYTICS
A. Medical Imaging in the Era of Precision Medicine:
Radiologists and pathologists regularly dissect

naturally visible and tiny pictures to make analyze
and participate in research. Predictions of the
patient's treatment and outcome are influenced by
the assessments' decisions. Accuracy medication, an
arising medical care approach, means to upgrade
the precision of clinical choices, working on
customized therapy and treatment making
arrangements for patients (portrayed in Fig. 3 [67]).
Advanced molecular and genomic tests are
becoming increasingly essential tools for physicians,
complementing conventional pathology and
radiology procedures, to enhance patient
stratification and individualized care management.
Recent advancements in computational imaging,
clinical genomics, and high-performance computing
enable the simultaneous consideration of various
clinicopathologic data of interest, providing
unprecedented insight into disease progression

mechanisms. These experiences could prompt the
improvement of another age of analytic and
prognostic measurements and devices. From a
clinical imaging outlook, the radiogenomics
worldview incorporates these goals to propel
accuracy medication. Radiologists and pathologists
regularly dissect naturally visible and tiny pictures
to make analyze and participate in research.
Predictions of the patient's treatment and outcome
are influenced by the assessments' decisions.
Accuracy medication, an arising medical care
approach, means to upgrade the precision of clinical
choices, working on customized therapy and
treatment making arrangements for patients
(portrayed in Fig. 3 [67]). Advanced molecular and
genomic tests are becoming an increasingly
important tool for physicians to use in addition to
conventional pathology and radiology procedures in
order to improve patient stratification and
individual care management. Late headways in
computational imaging, clinical genomics, and elite
execution registering permit the concurrent thought
of various clinicopathologic data of interest,
offering phenomenal understanding into sickness
movement components. These experiences could
prompt the improvement of another age of analytic
and prognostic measurements and devices. From a
clinical imaging outlook, the radiogenomics
worldview incorporates these goals to propel
accuracy medication. Radiologists and pathologists
regularly dissect naturally visible and tiny pictures
to make analyze and participate in research.
Predictions of the patient's treatment and outcome
are influenced by the assessments' decisions.
Accuracy medication, an arising medical care
approach, means to upgrade the precision of clinical
choices, working on customized therapy and
treatment making arrangements for patients
(portrayed in Fig. 3 [67]. These experiences could
prompt the improvement of another age of analytic
and prognostic measurements and devices. From a
clinical imaging outlook, the radiogenomics
worldview incorporates these goals to propel
accuracy medication.
B. Radiogenomics for Integrative Analytics:
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Radiomics research has turned into an important
harmless methodology with huge prognostic worth
[224]. By building imaging marks (joining shape,
surface, morphology, power, and so on., robust
predictive models or quantitative imaging
biomarkers are created by taking these
characteristics (or features) and linking them to
clinical outcomes [225]. The consolidation of
longitudinal and multi-methodology radiology and
pathology highlights (likewise talked about in Area
VII.C) further improves the oppressive force of
these models. Broad writing shows the
extraordinary capability of radiomics in illness
organizing, including malignant growth,
neurodegenerative, and cardiovascular sicknesses
[224]-[228].

As the disease progresses from a benign to a
dangerous state and throughout its course, changes
occur in the underlying molecular, histological, and
protein expression patterns. Each of these aspects
provides a distinct perspective and corresponding
significance.

The overall objective is to create proxy imaging
biomarkers that interface malignant growth
aggregates to genotypes, giving doctors a powerful
yet painless prognostic and indicative device.
The integrated mining of imaging and omics

features is necessary for concurrently developing
radiogenomic signatures. This approach means to
build strong prescient models that all the more
really correspond and depict clinical results
contrasted with utilizing imaging, genomics, or
histopathology in disconnection [68].

1) The TCIA/TCGA Initiatives Paradigm:

Within TCIA, specific phenotype groups, such as
those focused on breast invasive carcinoma (BRCA)
and glioblastoma (GBM) and lower-grade glioma
(LGG), exemplify initiatives in radiogenomics
research. The breast phenotype group, for instance,

Fig. 3 .Radiogenomics System Diagram
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identified 38 radiomics features from T1-weighted
Dynamic Contrast Enhancement (DCE) MRI,
categorized into six groups: (i) size (4), (ii) shape
(3), (iii) morphology (3), (iv) enhancement texture
(14), (v) kinetic curve (10), and (vi) enhancement
variance kinetics (4). Concurrently, the glioma
phenotype group utilizes the VASARI feature set
for subjective interpretation of MRI visual cues,
featuring 30 descriptive elements related to non-
enhanced cancer, contrast-enhanced cancer,
necrosis, and edema. The TCGA website, along
with software like TCGA-Assembler, facilitates the
extraction of genetic features for analysis.
Studies from the group characterized by breast

phenotype reveal significant associations between
breast cancer staging and specific radiomics
features . These highlights additionally exhibited
prescient capacities for clinical receptor status,
multigene examine repeat scores, sub-atomic
subtyping, and relationship with miRNA and
protein articulations [236]-[239]. In the glioma
aggregate gathering, speculation testing affirmed
huge relationship between certain radiomic and
genomic elements and in general and movement
free endurance. Model predictive power was
improved by combining radiogenomic signatures,
and imaging characteristics were linked to the
classification of molecular GBM subtypes,
providing non-invasive prognostic insights [68,
240].
2) Deep Learning-Based Radio genomics:
Deep learning methods are poised to

revolutionize radiomics and radiogenomics research,
despite the fact that they are still in their infancy
and primarily rely on transfer learning strategies.
Eminent examinations in malignant growth research
include recognizing Luminal An and other sub-
atomic subtypes in bosom malignant growth [241],
foreseeing bladder disease treatment reaction [242],
deciding IDH1 transformation status for LGG [243],
[244], foreseeing MGMT methylation status for
GBM [245], and determining generally endurance
for both GBM patients [246] and non-sickness
explicit subjects [247].
C. Integrative Analytics in Digital Pathology:

In recent time , the extent of picture based
examinations has extended to incorporate outcomes
from pathology pictures, genome data, and related
clinical information. For example, tests using 86
bosom malignant growth cases from the Genomics
Information Lodge (GDC) storehouse exhibited that
joining picture based and genomic includes
altogether further develops arrangement precision
[248]. Integrating genomic and computational
imaging signatures to characterize prostate cancer
was demonstrated in another study. Convolutional
neural network image biomarkers, genomic
pathway scores, and a recurrence network model
(Long Short-Term Memory, LSTM) were found to
have a stronger correlation with disease recurrence
than image-based texture features and standard
clinical markers [249].
Really incorporating omics information with

digitized pathology pictures for biomedical
examination is a computational test. Different
factual and AI strategies, including agreement
grouping [250], direct classifier [251], Tether
relapse demonstrating [252], and profound learning
[253], have been applied. These techniques were
utilized in examinations on malignant growths, for
example, bosom [250], lung [252], and colorectal
[253]. The combination of morphological elements
from digitized pathology pictures and - omics
information further developed visualization
exactness as well as given experiences into the
atomic premise of malignant growth cell and tissue
associations. Yuan et al., for instance [ 251] showed
that consolidating morphological data on Growth
Penetrating Lymphocytes (TILs) with quality
articulation information fundamentally upgrades
anticipation expectation for trama center negative
bosom cancers. Circulation designs for TILs and
related genomics data were portrayed for numerous
malignant growths [152], prompting new bearings
in integrative genomics for accuracy medication
and natural theory age.
Building on current research, there is a growing

interest in utilizing multimodal combinations of
image and genomic signatures to enhance the
classification of pathology specimens. By
integrating information from both imaging and
genomic data, researchers aim to develop more
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accurate and comprehensive diagnostic and
prognostic models. This approach allows for a
deeper understanding of the underlying molecular
mechanisms and histopathological features
associated with various diseases, leading to
improved patient stratification and personalized
treatment strategies. efforts are being revitalized to
create dependable Content-Based Retrieval
strategies . These techniques consequently search
through enormous reference libraries of pathology
tests to distinguish sores with qualities like a given
question case, working with deliberate
examinations of cancers inside and across
understanding populaces. One benefit of CBR
frameworks over customary classifier-based
frameworks is their capacity to permit specialists to
cross examine information while imagining the
most applicable profiles [254].

TABLE III. AI-BASEDMEDICAL IMAGING SYSTEMS WITH FDA-APPROVAL

Software Company Imaging Data Description

SubtlePET/ SubtleMR Subtle subtlemedical.com PET/ MRI Enhancement of PET/MR images

LungAI LiverAI Arterys www.arterys.com Lung CT Liver CT,
MRI

Segmentation of lesions and nodules

AmCAD-UT
AmCad BioMed

www.amcad.com.tw
Thyroid ultrasound Characterisation and assessment of thyroid tissue

IDx-DR IDx www.eyediagnosis.co Retinal Feedback on image quality, and
instructions for patient follow-up or referral

icobrain Icometrix icometrix.com Brain MRI, CT Interpretation of CT and MRI brain images

OsteoDetect Imagen www.lify.io Wrist X-ray Detection of distal radius fracture

AI1
Zebra Medical Vision
www.zebra-med.com

CT, X-ray of various diseases Detection and quantification of abnormalities

Aidoc
Head/Chest/Spine/Abdomen

Aidoc www.aidoc.com Radiology images Detection of acute abnormalities across the body

ProFound AI iCAD www.icadmed.com 2Dmammograms Detection of malignancies and calcifications

Transpara ScreenPoint Medical
screenpoint-medical.com

2D and 3D mammograms Detection and likelihood of cancer

Accipio
MaxIQ AI

http://www.maxq.ai/
Head CT Triaging of intracranial haemorrhage

Paige AI Paige https://paige.ai/
Digital slides Diagnosis for digital pathology

US: Ultrasound; MRI: Magnetic Resonance Imaging; CT: Computed Tomography; PET: Positron Emission Tomography.

http://www.ijoret.com


ISAR - International Journal of Research in Engineering Technology– Volume 9 Issue 1, 2024

ISSN: 2455 – 1341 www.IJORET.com Page 18

VIII. CONCLUDING REMARKS & FUTURE
DIRECTIONS
Medical imaging informatics has been a driving
force in clinical research, translation, and practice
for over three decades. The advances in associated
research branches discussed in this study hold the
promise to revolutionize imaging informatics across
the healthcare continuum. This transformation
enables informed, more accurate diagnosis, timely
prognosis, and effective treatment planning.
A significant percentage of FDA-approved AI-

based solutions, particularly those utilizing
machine- or deep-learning methodologies,
Information related to medical imaging. The FDA
serves as the official regulator for both medical
devices and software classified as medical devices
(SAMD)., has granted approval to solutions
performing various image analysis tasks. These
tasks include image enhancement (e.g.,
SubtlePET/MR, IDxDR), segmentation, and
detection of abnormalities (e.g., Lung/Liver AI,
Osteo Detect, Profound AI), as well as the
estimation of the likelihood of malignancy (e.g.,
Transpara). While radiology images are
predominantly addressed in these FDA-approved
applications, digital pathology images are also
starting to be addressed .
Table III offers a concise overview of currently

approved AI-based solutions by the FDA. The
future directions in this field anticipate significant
growth in the number of systems obtaining FDA
approval, further expanding the capabilities of
medical imaging informatics.
Hardware Breakthroughs and Big Medical Data:
Advancements in medical imaging hardware for
acquisition have enabled the generation of high-
throughput and high-resolution images across
various modalities, exhibiting unprecedented
performance while minimizing radiation exposure.
The ongoing era of extensive medical data is
anticipated to witness additional expansion in
imaging data, supplemented by information-rich
Electronic Medical Records (EMR/EHR), The key
challenge involves unlocking the complete potential
of this abundant data wea+lth while concurrently
safeguarding privacy and maintaining anonymity.

Efforts to standardize workflows and processes
include multi-institutional collaboration, datasets
that are freely accessible, featuring extensive
cohorts with thorough annotations, and research
studies that are both reproducible and explainable.
Deep Learning Dominance and Challenges:
Deep learning methods are dominating new
research endeavour’s, optimizing issues such as
complexity, domain dependence and reproducibility.
Unprecedented accuracy along with transfer
learning approaches, has catalysed deep learning's
adoption.
Obstacles endure, such as the requirement for

transparent AI techniques, the utilization of
sophisticated logic, and the application of 3D
reconstruction. There is a pressing need to
investigate the intersection of traditional machine
learning and deep learning techniques, particularly
to address vulnerabilities in generalization
stemming from diverse populations and smaller
datasets in the medical domain. By combining the
strengths of both approaches, researchers can
develop more robust and adaptable models capable
of effectively handling variations in data
distribution and size. This integrated approach
holds promise for improving the performance and
reliability of machine learning algorithms in
medical applications, ultimately leading to better
patient care and outcomes.
Future Directions and Challenges:
While the success of deep learning has been

remarkable, challenges remain, requiring
breakthroughs in explainable AI, combining
traditional and deep learning methods, and
overcoming generalization weaknesses. The
medical domain's unique challenge lies in the
difficulty of matching the enormous datasets used
in natural image deep learning tasks.
As medical imaging informatics advances, the

adoption of innovative solutions presented in this
study is expected to elevate the quality of care,
potentially transforming precision medicine.
Emerging paradigms, such as radiogenomics, aim
to facilitate knowledge extraction from
heterogeneous, multi-level data, offering new
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insights into disease etiology, progression, and
treatment efficacy. Integrative analytics approaches
are crucial for constructing advanced models that
accurately portray biological processes in diseases.
In conclusion, the transformative potential of

medical imaging informatics is poised to enhance
the quality of care, paving the way for a new era in
precision medicine.
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