SUM COMBINATION-2 CORDIAL LABELING OF CERTAIN GRAPHS

${ }^{1}$ T.M.Selvarajan *, ${ }^{2}$ Swapna Raveendran**
*(${ }^{1}$ Associate Professor, Department of Mathematics, Noorul Islam Centre for Higher Education, Kumarakovil, Thuckalay, -629180, India. Email: selvarajan1967@gmail.com.)
** (${ }^{2}$ Research Scholar, Department of Mathematics,
Noorul Islam Centre for Higher Education, Kumarakovil, Thuckalay, -629180, India.

Abstract

Let G be a simple graph and $\psi: V(G) \rightarrow\{1,2,3, \ldots,|V|\}$ is a bijective mapping. For each edge $v_{i} v_{j}$, assigned the label 1 if $\left(v_{i}+v_{j}\right) C_{2}$ is odd and 0 if $\left(v_{i}+v_{j}\right) C_{2}$ is even. ψ is called a sum combination -2 cordial labeling if $\left|e_{\psi}(0)-e_{\psi}(1)\right| \leq 1$, where $e_{\psi}(0)$ and $e_{\psi}(1)$ denote the number of edges labeled with 0 and labeled with 1 respectively. A graph which admits a Sum combination-2 cordial labeling is called Sum Combination -2 Cordial graph. In this article, are shown to be Sum Combination-2 Cordial labeling.

Keywords - Sum combination-2 cordial labeling, Wheel Graph, Graph $\boldsymbol{C}_{\boldsymbol{n}}$, Graph $\boldsymbol{W}_{\boldsymbol{n}} \odot \boldsymbol{K}_{2}$,
Graph $P_{n} \odot 2 K_{1}$
AMS Mathematical Subject Classification (2010)- 05C78

I. INTRODUCTION

In this article a new labeling technique introduced by using sum and combination in a different way named it as sum combination -2 cordial labeling. Combination is a technique in which we can make maximum possible arrangements of a system, without repetition. Combination can be used in many real-life situations also. graph labeling is contributed by Rosa in 1967.[6] made the contribution of three different labeling techniques called α labeling, β labeling and γ labeling. Cahit [1] introduced the concept of cordial labeling as a fragile version of graceful and harmonic labeling. Later on there were many more studies happened in the particular area. Gallian [2] made a vast studied on Graph Labeling, which gives an insight to many graph labeling techniques throughout these years. Combination is a technique in which can make maximum possible arrangements of a system, without repetition. Combination technique is
applied in graph labeling by Hegde et.al in [3] as there exists a bijection $\psi: V(G) \rightarrow\{1, \cdots|v|\}$ such that the induced edge function $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ defined as,
$g(u v)=\left\{\begin{array}{ll}\psi(u) C_{\psi(v)}, & \text { if } \psi(u)>\psi(v) \\ \psi(v) C_{\psi(u)}, & \text { if } \psi(v)>\psi(u)\end{array}\right.$ is injective,
where $\psi(u) C_{\psi(v)}$ is the number of combinations of $\psi(u)$ things taken $\psi(v)$ at a time. Such a labeling ψ is called combination labeling of G. They also proved many graphs holding this labeling technique. Later Murali et.al proved combination cordial labeling and [4] developed this technique into flower and corona graphs. Ponraj [5] contributed parity combination cordial labeling, in which each edge uv, assign the label $\binom{u}{v}$ or $\binom{v}{u}$ according as $u>v$ or $v>u . \psi$ is called a parity combination cordial labeling if ψ is a one to one map and $\left|e_{\psi}(0)-e_{\psi}(1)\right| \leq 1$ where $e_{\psi}(0)$ and $e_{\psi}(1)$ denote the number of edges labeled with an even number and odd number respectively. Different
types of graph labelling were studied in [7,8,9,10,11,12,13].Motivated from these we introduce a new labeling technique by incorporating both sum and combination called Sum Combination -2 cordial labeling. In this article we obtain Sum Combination -2 Cordial labeling to certain classes of graphs.

Definition 1.1

Let G be a simple graph and $\psi: V(G) \rightarrow\{1,2$, $3, \ldots, n\}$ is a bijective mapping. For each edge $v_{i} v_{j}$, assigned the label 1 if $\left(v_{i}+v_{j}\right) C_{2}$ is odd and 0 if $\left(v_{i}+v_{j}\right) C_{2}$ is even. ψ is called a sum combination -2 cordial labeling if $\left|e_{\psi}(0)-e_{\psi}(1)\right| \leq 1$. Where $e_{\psi}(0)$ and $e_{\psi}(1)$ denote the number of edges labeled with 0 and labeled with 1 respectively. A graph which admits a Sum combination-2 cordial labeling is called sum combination -2 cordial labeling graph.

Example 1.2

Fig.1.1: Graph C_{6}
In graph C_{6}
$\begin{array}{ll}(1+2) C_{2}=3 & (1+6) C_{2}=21 \\ (5+6) C_{2}=55 & e_{\psi}(0)=4 \text { and } e_{\psi}(1)=2 \\ (2+3) C_{2}=10 & \left|e_{\psi}(0)-e_{\psi}(1)\right|>1 . \\ (3+4) C_{2}=21 & \\ (4+5) C_{2}=36 . & \text { Therefore, } C_{6} \text { is not a sum }\end{array}$ combination-2 cordial graph

Example1.3

Fig. 1.2: Graph $K 4$

$(1+2) C_{2}=3$	$(2+3) C_{2}=10$
$(3+4) C_{2}=21$	$(4+5) C_{2}=36$
$(5+6) C_{2}=55$	$(1+4) C_{2}=10$

$e_{\varphi}(0)=3$ and $e_{\varphi}(1)=3,\left|e_{\varphi}(0)-e_{\varphi}(1)\right|=0$
Therefore, $K 4$ is a sum combination-2 cordial graph

Theorem 1.4

The star graph $K_{1, n}$ admits sum combination-2 cordial labeling.

Proof

The star graph $K_{1, n}$ contains ($\mathrm{n}+1$) vertices and n edges. Label $\psi: V\left(K_{1, n}\right) \rightarrow\{1,2,3, \ldots, n+1\}$ be the bijection. Let v be the central vertex of degree n . Label the central vertex with 1 and label the remaining pendant vertices with $2,3,4, \ldots n+1$. Since $(n+1) C_{2}$ is even , if $n \equiv 0,1(\bmod 4)$ and odd if $n+1 \equiv 2,3(\bmod 4)$

Case (1) n is odd
$e_{\psi}(0)=\frac{n+1}{2}, e_{\psi}(1)=\frac{n-1}{2}$ and $\mid e_{\psi}(0)-$ $e_{\psi}(1) \mid=1$.

Case (2) n is even
$e_{\psi}(0)=\frac{n}{2}, e_{\psi}(1)=\frac{n}{2}$ and $\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$.
Hence, $K_{1, n}$ admits sum combination-2 cordial labeling.

Example 1.5

$$
\begin{array}{lc}
\text { Fig 1.3: The graph } K_{1,10} \\
(1+2) C_{2}=3 & (1+5) C_{2}=15 \\
(1+3) C_{2}=6 & (1+6) C_{2}=21 \\
(1+4) C_{2}=10 & (1+7) C_{2}=28 \\
(1+8) C_{2}=36 & (1+9) C_{2}=45 \\
(1+10) C_{2}=55 & (1+11) C_{2}=66 \\
e_{\psi}(0)=5 \text { and } e_{\psi}(1)=5 & \left|e_{\psi}(0)-e_{\psi}(1)\right|=0 .
\end{array}
$$

Hence $K_{1,10}$ admits sum combination-2 cordial labeling.

Theorem 1.6.

The path graph P_{n} admits sum combination-2 cordial labeling

Proof.

The path contains vertex set $\left\{v_{1}, v_{2}, \ldots ., v_{n}\right\}$.
Define a bijective function
$\psi: V\left(P_{n}\right) \longrightarrow\{1,2, \ldots,|v|\}$, by $\psi(v i)=i$ for $1 \leq i \leq$ n. The edges $v_{2 i} v_{2 i+1}$ received the label 0 and edges $v_{2 i-1} v_{2 i}$ received the label 1 .

Case (1) n is odd

$$
\begin{aligned}
& e_{\psi}(1)=\frac{n-1}{2} \text { and } \quad e_{\psi}(1)=\frac{n-1}{2} \\
& \left|e_{\psi}(0)-e_{\psi}(1)\right|=0
\end{aligned}
$$

Case (2) n is even

$$
\begin{aligned}
& e_{\psi}(0)=\frac{n}{2}-1 \text { and } e_{\psi}(1)=\frac{n}{2} \\
& \left|e_{\psi}(0)-e_{\psi}(1)\right|=1
\end{aligned}
$$

Therefore, P_{n} is a sum combination -2 cordial graph.

2.1 Sum combination-2 cordial labeling of cycle related

 graphs
Theorem 2.1

The graph cycle C_{n}, admits sum combination-2 cordial labeling except $n=6+4 i, i=0,1,2 \ldots$,
Proof
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. Define a bijection $\psi: V\left(C_{n}\right) \rightarrow\{1,2, \ldots,|v|\}$, by $\psi\left(v_{k}\right)=k$ for $1 \leq$ $k \leq n$.

Case (1) n is odd, Using Theorem 1.6
For the Path, $e_{\psi}(0)=\frac{n-1}{2}$ and $e_{\psi}(1)=\frac{n-1}{2}$ For the edge $v_{n} v_{1},(1+n) C_{2}$ is an even number or an odd number. $\left|e_{\psi}(0)-e_{\psi}(1)\right| \leq 1$.

Case (2) n is even, Using Theorem 1.6.

For the Path, $e_{\psi}(0)=\frac{n}{2}$ and $e_{\psi}(1)=\left(\frac{n}{2}-1\right)+1$. $\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$.
Since, $(1+\mathrm{n}) C_{2}$ is an even number except when $n=$ $6+4 i, i=0,1,2, \ldots$,
If $n=6+4 i, i=0,1,2 \ldots$, then $v_{n} v_{1}$ received the label 1. Hence $\left|e_{\psi}(0)-e_{\psi}(1)\right|>1$.
Hence C_{n} admits sum combination-2 cordial labeling except $n=6+4 i, i=0,1,2 \ldots$

Theorem 2.2

The wheel graph W_{n} admits sumcombination-2 cordial labeling except $=6+4 i, i=0,1,2 \ldots$
Proof
The wheel graph W_{n} contains ($\mathrm{n}+1$) vertices and 2 n edges. Let $\psi: V\left(W_{n}\right) \rightarrow\{1,2,3 \ldots,|v|\}$ be the bijection defined by $\psi\left(v_{i}\right)=i ; 2 \leq i \leq n+$ 1.Label the central vertex v_{1} of degree by 1 and the boundary vertices by $2,3, \ldots n+1$

Case (1) n is even
Using Theorem 1.4 and Theorem 1.6
$e_{\psi}(0)=n-1 e_{\psi}(1)=n$, except when $n=6+$ $4 i, i=0,1,2, \ldots$
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=1$.
When $n=6+4 i, i=0,1,2, \ldots$
$e_{\psi}(0)=n-1 e_{\psi}(1)=n+1$
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=2>1$.

Case (2) n is odd
Using Theorem 1.4 and Theorem 1.6
$e_{\psi} \quad(0) \quad=\quad \mathrm{n}$ and $\quad e_{\psi}(1)=n-1$ $\left|e_{\psi}(0)-e_{\psi}(1)\right| \leq 0$.
Therefore, wheel graph W_{n} admits sum combination-2 cordial labeling except when $n=$ $6+4 i ; i=0,1,2 \ldots$

Example 2.3

Fig. 2.1: Graph W_{10}
$e_{\psi}(0)=12 e_{\psi}(1)=9 \quad\left|e_{\psi}(0)-e_{\psi}(1)\right|>1$.
W_{10} is not a sum combination -2 cordial graph.

Fig. 2.2: Graph $W 9$
$e_{\psi}(0)=9$ and $e_{\psi}(1)=9,\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$. W_{9} is a Sum combination-2 cordial graph.

Theorem 2.3

The circular ladder graph 『CL】_n, $\mathrm{n} \geq 2$ except when $n \equiv 2(\bmod 4)$ admits sum combination-2 cordial labeling
Proof.
The circular ladder graph $C L_{n}$ consists of 2 n vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}, v_{n+2}, \ldots, v_{2 n}\right\}$.The vertices on the interior rim are $v_{1}, v_{2}, \ldots, v_{n}$, the vertices of the exterior rim are $v_{n+1}, v_{n+2}, \ldots, v_{2 n}$ and n edges are $v_{1} v_{n+1}, v_{2} v_{n+2}, \ldots, v_{n} v_{2 n}$,in the graph $C L_{n}$.
Define a bijection $\psi: V\left(C L_{n}\right) \rightarrow\{1,2, \ldots,|v|\}$ by $\psi\left(v_{i}\right)=i$ for $1 \leq i \leq 2 n$.

Case (1) $n \equiv 0(\bmod 4)$
$e_{\psi}(0)=\frac{3 n}{2}$ and $e_{\psi}(1)=\frac{3 n}{2},\left|e_{\psi}(0)-e_{\psi}(1)\right|=$ 0 .

Case $(2) n \equiv 1(\bmod 4)$
$e_{\psi}(0)=\frac{3 n-1}{2}$ and $e_{\psi}(1)=\frac{3 n+1}{2}, \mid e_{\psi}(0)-$ $e_{\psi}(1) \mid=1$.
Case $(3) n \equiv 3(\bmod 4)$
$e_{\psi}(0)=\frac{3 n+1}{2}$ and $\quad e_{\psi}(1)=\frac{3 n+1}{2}, \mid e_{\psi}(0)-$ $e_{\psi}(1) \mid=0$.
Case (4) $n \equiv 2(\bmod 4)$
$e_{\psi}(0)=\frac{3 n}{2}-1$ and $e_{\psi}(1)=\frac{3 n}{2}+1, \quad \mid e_{\psi}(0)-$ $e_{\psi}(1) \mid>1$.
Hence, $C L_{n}, n>2$ admits Sum Combination-2 cordial labeling except when $n \equiv 2(\bmod 4)$
admits sum combination 2 cordial labeling.

Theorem 2.4

The comb graph $P_{n} \bigcirc K_{1}$ is sum combination-2 cordial labeling.
Proof
The Comb graph $P_{n} \odot K_{1}$ contains 2 n vertices $(2 n-1)$ edges.
Define $\psi: V\left(P_{n} \odot K_{1}\right) \rightarrow\{1,2,3, . . n, n+1, \ldots,|v|\}$ be the bijection defined by
$\psi\left(v_{i}\right)=i ; \quad 0 \leq i \leq 2 n$
Case (1) n is odd
P_{n} contains odd number of vertices
Using Theorem 1.6, the graph $P_{n} \odot K_{1}$ contains 2 n 1 edges label n vertices of P_{n} by $1,2, \ldots, \mathrm{n}$ and remaining pendant vertices by $\mathrm{n}+1 \mathrm{n}+2, \ldots 2 \mathrm{n}$.
The edges $v_{2 i} v_{2 i+1}$ received the label 0 and the edeges $v_{2 i-1} v_{2 i}$ received the label 1 . Also the edges $v_{i} v_{n+i}$ received the label 1 for $\mathrm{i}=1,3,5 \ldots$ and received the label 0 for
$i=2,4, \ldots, n-1$. Therefore, $e_{\psi}(0)=\mathrm{n}$ and $e_{\psi}(1)=n-1$.
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=1$.
Case (2) n is even
P_{n} contains even number of vertices
The edges $v_{i} v_{n+i}$ received the label 0 for $i=$ $1,3, \ldots, \mathrm{n}-1$ and received the label 1
for $i=2,4, . ., n$.
Therefore, $\quad e_{\psi}(0)=\frac{n}{2}-1+\frac{n}{2}=n-1 \quad$ and $e_{\psi}(1)=\frac{n}{2}+\frac{n}{2}=n$.
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=1$
$P_{n} \bigcirc K_{1}$ admits sum combination-2 cordial labeling.

Theorem 2.5

The Double comb ($P_{n} \odot 2 K_{1}$) admits sum combination-2 cordial labeling.
Proof
The Double comb graph ($P_{n} \bigcirc 2 K_{1}$) contains $3 n-1$ edges and $3 n$ vertices.
Define $\quad \psi: V\left(P_{n} \odot 2 K_{1}\right) \rightarrow\{1,2, \ldots,|v|\} \quad$ by $\psi\left(v_{i}\right)=i$ for $1 \leq i \leq n, \psi\left(u_{i}\right)=n+i$ for $n+i \leq$ $i \leq 2 n$, and $\psi\left(w_{i}\right)=2 n+i$ for $2 n+1 \leq i \leq 3 n$. The edges $v_{2 i} v_{2 i+1}$ received the label 0 and the edges $v_{2 i-1} v_{2 i}$ received the label 1 for the path P_{n}. Also, the edges $v_{i} v_{n+i}$ received the label 0 for $i=$
$1,3,5, \ldots, n-1$, the edges $v_{i} v_{n+i}$ received the label 0 for $i=2,4,6, \ldots, n$, the edges
$v_{i} v_{2 n+i}$ received the label 0 for $i=1,3,5, \ldots, n-1$, and the edges $v_{i} v_{2 n+i}$ received 0 label 1 for $i=$ 2,4,6, ..., n
Case $(\mathbf{1}) \mathrm{n}$ is even
Using Theorem 2.4, $\mathrm{e}_{\psi}(0)=\frac{3 \mathrm{n}}{2}-1$ and $\mathrm{e}_{\psi}(1)=\frac{3 \mathrm{n}}{2}$
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=1$.
Case (2) n is odd
$e_{\psi}(0)=\frac{3 n}{2}-1$ and $e_{\psi}(1)=\frac{3 n}{2}$
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=1$.
Therefore, $P_{n} \bigcirc 2 K_{1}$ admits sum combination-2 cordial labeling

Theorem 2.6

The graph $W_{n} \odot K_{2}$ admits sum combination-2 cordial labeling.
Proof
The graph $W_{n} \bigcirc K_{2}$ contains $3 n+1$ vertices and 4 n edges. Define a bijection function $\psi:\left(W_{n} \bigcirc\right.$ $\left.K_{2}\right) \rightarrow\{1,2, \ldots,|V|\}$ by $\psi(v)=1$ and $\psi\left(v_{i}\right)=i+$ $1,1 \leq i \leq 3 n$, where v_{1} is the central vertex of degree n. Label the central vertex 1 , the vertices on the wheel by $2,3, \ldots, n+1$ and the remaining pendant vertices by $n+2, \ldots, 3 n+1$.
Case(1) n is odd
$e_{\psi}(0)=2 n$ and $e_{\psi}(1)=2 n$,
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$.
Case (2) n is even
$e_{\psi}(0)=2 \mathrm{n}$ and $e_{\psi}(1)=2 \mathrm{n}$,
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$.
Therefore, $W_{n} \odot K_{2}$ is a sum combination- 2 cordial graph.
Example

Figure 6.19: Graph $W_{4} \odot \overline{K_{2}}$

$$
\begin{aligned}
& e_{\varphi}(0)=8, e_{\varphi}(1)=8 \\
& \left|e_{\varphi}(0)-e_{\varphi}(1)\right|=0 \leq 1
\end{aligned}
$$

3. Sum combination-2 cordial labeling of subdivision of graphs

Theorem 3.1

The subdivision of pendant vertices of a comb graph $\operatorname{Sd}\left(P_{n} \bigcirc K_{1}\right)$ admits sum combination -2 cordial labeling
Proof
The subdivisions of pendant vertices of a comb graph $\operatorname{Sd}\left(P_{n} \odot K_{1}\right)$ contains $3 n$ vertices and $3 n-$ 1 edges. Define a bijection $\psi: V\left(S d\left(P_{n} \bigcirc K_{1}\right) \rightarrow\right.$ $\{1,2, \ldots,|v|\}$ by $\psi\left(v_{i}\right)=i ; 1 \leq i \leq n$. for the path P_{n} vertices of degree $2, \psi\left(v_{i+1}\right)=n+1,1 \leq i \leq n$, and pendant vertices by $\psi\left(v_{i}\right)=2 n+i ; 1 \leq i \leq n$. Case (1) n is odd
$e_{\psi}(0)=\frac{3 n-1}{2}$ and $e_{\psi}(1)=\frac{3 n-1}{2},\left|e_{\psi}(0)-e_{\psi}(1)\right|=$ 0 .

Case (2) n is even
$e_{\psi}(0)=\frac{3 n}{2}-1$ and $e_{\psi}(1)=\frac{3 n}{2},\left|e_{\psi}(0)-e_{\psi}(1)\right|=$ 1.

Therefore, $\operatorname{Sd}\left(P_{n} \bigcirc K_{1}\right)$, is a sum combination-2 cordial graph

Theorem 3.2

The subdivision of path of a triangular snake graph $\operatorname{Sd}\left(T S_{n}\right)$ admits sum combination -2 cordial labeling.
Proof
The subdivision of path of a triangular snake $S d\left(T S_{n}\right)$ contains ($3 n-2$) vertices and ($4 n-$ 4) edges. Define a bijection $\psi: V\left(S d\left(T S_{n}\right) \rightarrow\right.$ $\{1,2, \ldots,|v|\}$ by $\psi\left(v_{i}\right)=i$ for $1 \leq i \leq 3 n-2$. Label the path $1,2, \ldots,(2 n-1)$ and remaining vertices by $2 n, \ldots,(3 n-2)$.
Case (1) n is odd
Using Theorem 1.6
$e_{\psi}(0)=2 n-2$ and $e_{\psi}(1)=2 n-2$
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$.
Case (2) n is even
Using Theorem 1.6
$e_{\psi}(0)=2 n-2$ and $e_{\psi}(0)=2 n-2$
$\left|e_{\psi}(0)-e_{\psi}(1)\right|=0$
Therefore, subdivision of path of a Triangular snake graph $S d\left(T S_{n}\right)$ is a sum combination -2 cordial graph.

Example 3.3

$$
e_{\psi}(0)=8, e_{\psi}(1)=8 .
$$

$$
\left|e_{\psi}(0)-e_{\psi}(1)\right|=0 .
$$

REFERENCES

[1] I.Cahit, Cordial graphs: a weaker version of graceful and harmonic graphs, Ars Combinatoria, 23,1987, 201-207.
[2] J. A Gallian , A Dynamic Survey of Graph labeling , The Electronic Journal of Combinatorics, 2022, 1-623.
[3] S.M Hegde and Sudhakar Shetty, Combinatorial Labelings of Graphs, Applied Mathematics ENotes, 6,2006, 251-258.
[4] B.J. Murali, K Thirusangu, B.J. Balamurugan, Combination Cordial Labeling of Graphs, International Journal of Control Theory and its Applications, 9(51), 2016, 29-36.
[5] R. Ponraj, S . Sathish Narayanan and A.M.S Ramasamy, Parity Combination Cordial Labelinh of Graphs, Jordan Journal of Mathematics and Statistics ,8(4), 2015, 293-308.
[6] A.Rosa, On CertainValuations of the vertices of a graph , Theory of Graphs(Internat. Symposium,Rome , July 1966), Gordon and Breach , N.Y. and Dunod Paris (1967),349-355.
[7] Selvarajan, T. M., and Swapna Raveendran. "Quotient square sum cordial labeling." International Journal of Recent Technology and Engineering (IJRTE) 8.2s3 (2019): 138-142.
[8] Selvarajan, T. M., and R. Subramoniam. "Prime graceful labeling." International Journal of Engineering and Technology 7.4.36 (2018): 750752.
[9]. Deepa, B., V. Maheswari, and V. Balaji. "An Efficient Cryptosystem Using Playfair Cipher Together With Graph Labeling Techniques." Journal of Physics: Conference Series. Vol. 1964. No. 2. IOP Publishing, 2021.
[10]. Panma, Sayan, and Penying Rochanakul. "Prime-Graceful Graphs." Thai Journal of Mathematics 19.4 (2021): 1685-1697.
[11]. Soleha, Maulidatus, Purwanto Purwanto, and Desi Rahmadani. "Some snake graphs are edge odd graceful." AIP Conference Proceedings. Vol. 2540. No. 1. AIP Publishing, 2023.
[12].Fawzi, F. A. "Dividing Graceful Labeling of Certain Tree Graphs." Tikrit Journal of Pure Science 25.4 (2020): 123-126.
[13]. Nayana, M. V., and K. R. Sobha. "Encoding And Decoding Process Using Prime Graceful Labeling." Tuijin Jishu/Journal of Propulsion Technology 44.4 (2023): 2638-2644.

