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Abstract:

The development of the Internet of Things (IoT) has allowed for continuous, real-time
structural integrity monitoring, which has greatly increased structural health monitoring
(SHM). However, noise and interference can impair the quality of sensor data, which is a
major factor in how effective these systems are. In order to improve signal clarity in IoT-
based SHM systems, this study looks into the application of Butterworth filters. The passband
of butterworth filters is renowned for having a maximally flat frequency response, which
reduces signal distortion. In order to maximize signal processing, the research will compare
Butterworth filters with other filter types such as Chebyshev and Elliptical filters, develop
adaptive filtering approaches, and investigate hybrid filtering methods. For the design and
implementation of filters, MATLAB, Python, and LabVIEW are used. The results show that
adaptive filtering approaches can further increase performance by adapting to real-time signal
features, and that higher-order Butterworth filters greatly improve signal clarity. By offering
a thorough examination of Butterworth filters and suggesting novel approaches for enhanced
signal processing in SHM systems, this study advances the area.

Keywords: IoT, Structural Health Monitoring (SHM), Butterworth Filter, Signal Processing,
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1. INTRODUCTION

Many industries have seen tremendous changes as a result of the Internet of Things (IoT),
including structural health monitoring (SHM). IoT enables continuous and real-time
structural integrity monitoring through the deployment of sensor networks, which is a crucial
component for guaranteeing the maintenance and safety of vital infrastructure including
buildings, bridges, and dams. However, the quality and precision of the data gathered from
sensors is a major factor in how effective these monitoring systems are. Digital filters, in
particular the Butterworth filter, are essential for controlling phase response and attenuation,
which improves signal clarity.
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A variety of sensors and data gathering tools are used in structural health monitoring to track
the state of structures in real time. The main goals are to extend the life of structures, stop
malfunctions, and identify possible problems early. Typically, these SHM systems collect
information on a range of factors, including stresses, vibrations, and other markers of
structural health. In contrast, the Internet of Things (IoT) is a network of connected objects
that can exchange data and communicate with one another. Within SHM, IoT makes it easier
to install multiple sensors throughout a building, allowing for real-time data processing and
ongoing observation.

Signals from sensors are processed through digital filters to enhance their quality. Filters can
eliminate undesired elements and noise from the signal, which facilitates more accurate data
analysis and interpretation.A particular kind of digital filter called the Butterworth filter is
made to have a smooth transition to the stopband and a flat frequency response in the
passband, or no ripple. Because of this characteristic, it's perfect for applications that need a
clean, undistorted signal.

Digital filter design and implementation are commonly done with MATLAB. It offers
powerful signal processing features, such as functions for creating Butterworth filters. For the
implementation of digital filters, Python is a popular choice because of libraries like SciPy
and NumPy. A wide range of tools for designing and evaluating Butterworth filters are
available in these libraries. Another platform that provides engineers with a graphical
programming environment for real-time signal processing and filter implementation is
LabVIEW.

Better attenuation of undesirable frequencies and a steeper roll-off are provided by higher-
order Butterworth filters. The use of higher-order filters is suggested in this research to
improve signal clarity in SHM systems. With adaptive filtering, the filter parameters are
changed in real-time in response to the signal's properties. By adjusting to changing
circumstances, this method can enhance SHM systems' performance even more. By
combining the advantages of various filtering techniques, Butterworth filters with other filter
types—like Kalman filters—can provide better performance.

Objectives

1. Enhance Signal Clarity: To use Butterworth filters to raise the caliber of signals received
from Internet of Things-based SHM devices.

2. Compare Filtering Techniques: To assess how well Butterworth filters work in comparison
to other filters like Elliptical and Chebyshev filters.

3. Create Adaptive Filtering Techniques: To provide and put into practice adaptive
Butterworth filtering methods for processing signals in real time.

4. Integrate Hybrid Filters: Investigate the advantages of mixing different filtering techniques
with Butterworth filters for best results.

Research Gap
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Despite the widespread use of digital filters in SHM, little is known about the unique benefits
of Butterworth filters in Internet of Things-based SHM systems. Furthermore, in this context,
the potential of adaptive and hybrid filtering algorithms is yet not fully realized. By offering a
thorough examination of Butterworth filters and suggesting fresh methods for improved
signal processing, this work seeks to close these gaps.

Problem Statement

The primary difficulty in IoT-based SHM systems is preserving signal integrity in the face of
interference and noise. Conventional filters frequently distort signals by compromising
between phase response and attenuation. Although Butterworth filters present a more
favorable option, their use in SHM has not received enough attention. The purpose of this
work is to discuss the necessity of efficient filtering methods to guarantee superior signal
processing in SHM systems.

For accurate and trustworthy structural health monitoring, it is essential to optimize signal
clarity in Internet of Things (SIoT)-based SHM systems. A possible answer is provided by
the Butterworth filter, which has a special combination of phase response and attenuation. In
order to improve signal processing capabilities, this study suggests investigating higher-order,
adaptive, and hybrid Butterworth filtering strategies. This study intends to further the subject
of SHM and contribute to safer and more effective infrastructure management by addressing
the existing research gaps and offering thorough evaluations.

2. LITERATURE SURVEY:

In order to establish which filter performs better while denoising ECG signals using wavelet
transform techniques, Rastogi and Mehra's (2013) study compares Butterworth and
Chebyshev filters. The goal is to assess these filters' performance in denoising ECG signals.
The methodology entails comparing the efficacy of Butterworth and Chebyshev filters and
applying wavelet transform for denoising ECG signals. The Chebyshev filter gives a tighter
cutoff but has ripples in the passband (Type I) or stopband (Type II), whereas the Butterworth
filter is renowned for its smooth frequency response and maximally flat magnitude response.
Mean square error (MSE), signal-to-noise ratio (SNR), and visual examination of denoised
data are examples of evaluation metrics. In the context of ECG signal denoising, the results
illustrate the benefits and drawbacks of each filter type, offering insights into which filter is
better suited for particular ECG denoising applications.

With the use of cutting-edge sensors and data processing technologies, Mahmud et al. (2018)
offer a full Internet of Things platform for Structural Health Monitoring (SHM) that permits
real-time tracking, analysis, and maintenance of structural integrity. Using a variety of
sensors, this platform continuously assesses the condition of bridges, buildings, and other
infrastructures, offering real-time insights and warnings to stop structural collapses. With the
application of sophisticated algorithms for predictive maintenance, it enables users to access
monitoring data and system controls remotely over the internet before possible problems
worsen. The platform has been engineered to ensure smooth integration with pre-existing
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SHM systems and infrastructure. It is scalable to suit different configurations and boasts an
intuitive interface that facilitates data viewing and interaction.

The proposal by Kaya & safak (2015) focuses on the real-time processing and interpretation
of continuous data streams from structural health monitoring (SHM) systems, which are
essential for determining and preserving the structural integrity of buildings. This
methodology prioritizes prompt processing of incoming data to guarantee timely insights into
the condition of structures under observation, which is essential for guaranteeing safety and
effective upkeep.

In order to effectively analyze and model structural data and identify any damage or
irregularities, Rezaiee-Pajand et al. (2018) provide a novel approach to structural health
monitoring. By iteratively determining the proper order for time-series models used in
structural health monitoring, this technique—known as Iterative Order Determination—
improves the accuracy of structural health assessment. Understanding the behavior and
condition of structures over time is made possible by this technique, which focuses on time-
series modeling unique to structural health monitoring. Its application covers a wide range of
areas, including pipelines, buildings, and bridges, guaranteeing the dependability and safety
of civil infrastructure.

In order to discover irregularities or anomalies in sensor data, Rao et al. (2015) suggest a null
subspace-based method for sensor fault identification in structural health monitoring (SHM).
This method entails examining the null space of the system's measurements. By comparing
measured data with the expected null subspace, this technique efficiently identifies
malfunctioning sensors and enables prompt diagnosis and identification of deviations brought
on by sensor defects. Improved accuracy and dependability in SHM systems provide more
accurate structural health monitoring, which presents a great opportunity for real-time
structural maintenance and monitoring of different types of structures, such as buildings,
bridges, and industrial installations. Subsequent investigations may concentrate on enhancing
and perfecting this methodology to enhance its sensitivity and resilience in identifying sensor
malfunctions in various kinds of buildings and environmental circumstances.

A thorough method for fracture detection and health monitoring of highway steel-girder
bridges is put forth by Schallhorn and Rahmatalla (2015). This entails assessing overall
structural integrity and identifying cracks using a variety of techniques, including visual
examination, non-destructive testing (NDT), and structural health monitoring (SHM) devices.
Visual inspections by qualified experts aid in spotting obvious indications of corrosion,
cracks, and other problems. Non-destructive testing (NDT) methods, including as
radiography, magnetic particle, and ultrasonic testing, allow for the identification of defects
without endangering the structure. By using sensors to track variables like temperature,
vibration, and strain, SHM systems may provide real-time information about the state of the
bridge. Bridge inspections are made more accurate and efficient by new technology like
LiDAR scanning, drones, and remote sensing. In order to identify possible failure areas and
prioritize maintenance tasks, data gathered from inspections and monitoring systems is
processed using sophisticated algorithms and machine learning. Highway steel-girder bridge
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safety and longevity are ensured by prompt diagnosis and treatment of cracks and structural
problems, which lowers the likelihood of accidents and future expensive repairs.

Chen (2014) suggests a unique method that combines uncertainty and structural health
monitoring (SHM) to maximize scheduled maintenance for composite aircraft structures. The
objective of this methodology is to improve the efficiency and safety of maintenance
scheduling by including uncertainty in degradation processes, like material aging and damage
accumulation, into the maintenance optimization model. Making better maintenance
decisions is made possible by utilizing SHM data, which offers real-time information on the
state of composite structures. Taking uncertainties into account and incorporating SHM data
into maintenance programs for composite aircraft structures is the ultimate goal of the
suggested strategy, which also seeks to lower maintenance costs.

In order to manage aquatic ecosystems impacted by human infrastructure, Coraggio &
Coraggio (2016) stress the significance of water quality monitoring and prediction. Finding
the ideal sampling frequency is still difficult, even with advances in technology and high-
resolution data collecting. This paper analyzes machine learning for predictive modeling,
gives a methodology for choosing noise removal strategies, and uses statistics to determine
the appropriate sample frequency. The study illustrates the advantages and difficulties of
regular water quality sampling using high-frequency data from Bristol's Floating Harbour.

Chowdhury et al. (2017) discuss advancements in Ambient Assisted Living (AAL) systems,
which are designed to improve the quality of life for the elderly and individuals with
impairments. These systems use ubiquitous computing, sensors, and wireless networks to
transmit data from sensors to healthcare providers. A key challenge is ensuring energy-
efficient communication within Body Area Networks (BANs). The chapter focuses on
addressing this challenge by analyzing energy efficiency requirements and presenting a
multi-tier communication protocol that enhances BAN communication in AAL systems.

According to Loyola (2018), the architecture, construction, engineering, and operation
(AECO) sector uses big data in an underdeveloped manner relative to other industries, with
most applications being experimental and small-scale. However, because big data provides
comprehensive insights into buildings and occupants, it has the potential to significantly
transform the way that decisions are made in building design. Loyola highlights the need for
more research in understanding design issues, predicting performance, and lifecycle
evaluation after evaluating key principles and surveying 100 cases. The study suggests 12
important application areas.

Dornheim and Link (2017) describe a Reinforcement Learning (RL) method for production
process parameter optimization. The aim of modeling manufacturing processes as Markov
Decision Processes (MDP) is to maximize rewards according to the status of the finished
product. In complicated production situations, the RL algorithms handle both realtime
adaptive control and offline, simulation-based optimization. The application of this strategy
to metal sheet deep drawing processes is particularly covered in the study, which also shows
early success in process parameter optimization.

By customizing a text transcription interface to support transitions from automated to manual
driving, Schartmüller (2017) investigates the possibility of commuters working while
operating highly automated cars (SAE Level 3-4). The "Heads-Up" display on the windshield
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and the conventional "Heads-Down" interface are contrasted in the study. While safer, the
Heads-Up approach may not always strike the ideal balance between productivity and safety,
as evidenced by the results of a driving simulator research (N=20) that demonstrated
improved take-over performance with the Heads-Up display but worse typing accuracy.

Panga (2022) examines the utilization of Discrete Wavelet Transform (DWT) for the
interpretation of ECG signals within IoT-based health monitoring systems. Utilizing DWT's
enhanced time-frequency localization, the study employs High Pass Filters (HPF) and Low
Pass Filters (LPF) to split ECG signals into constituent frequencies, thereby enabling
denoising, compression, and feature extraction. The system incorporates IoT technology to
relay processed data to cloud servers for immediate analysis. Performance indicators, such as
Signal-to-Noise Ratio (SNR), Mean Squared Error (MSE), and compression ratios, indicate
substantial enhancements in signal clarity and data efficiency, hence improving the
identification and diagnosis of cardiac problems.

Grandhi (2021) examines the amalgamation of Human-Machine Interface (HMI) display
modules with passive IoT optical fiber sensor networks for the purpose of water level
monitoring. The research utilizes Fiber Bragg Grating (FBG) sensors because to its
exceptional sensitivity and dependability, in conjunction with IoT gateways and HMI
modules for real-time data visualization. Signal conditioning, feature extraction, and machine
learning algorithms augment predictive analytics and guarantee data precision. Performance
metrics such as reliability, response time, and power efficiency validate the system's
robustness. This holistic strategy illustrates the efficacy of integrating HMI and IoT
technology in environmental management and flood mitigation applications.

Raj and Yallamelli (2021) investigate the use of the RSA algorithm into cloud computing to
tackle significant security issues, including confidentiality, integrity, and data availability.
They emphasise RSA's capability in utilising asymmetric cryptography for secure data
transmission, hence obviating the necessity for shared secret keys. The research highlights the
significance of RSA in safeguarding privacy and authentication inside cloud services offered
by Microsoft Azure and AWS. The authors acknowledge RSA's adaptation in cloud contexts
but advocate for additional research to tackle scalability and key management issues to
improve cloud data security.

Surendar Rama Sitaraman (2022) performed an extensive assessment on the function of
anonymised AI in improving the security and privacy of IoT services in edge computing
settings. The research examines the transition from centralised cloud systems to decentralised
architectures, highlighting the application of anonymised AI using homomorphic encryption,
secure multi-party computation, and federated learning. Comprehensive testing, user input,
and compliance with data protection laws validated the effectiveness of anonymised AI in
safeguarding privacy and securing IoT data. The results indicate its considerable potential for
practical applications.

Grandhi (2022) investigated the utilisation of adaptive wavelet transform (AWT) in wearable
sensor IoT systems to improve paediatric health monitoring. The research underscores the
necessity of effective data preprocessing to enhance signal quality, extract essential features,
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and facilitate precise health evaluations. AWT shown efficacy in noise reduction,
preservation of low-frequency components, and enhancement of real-time health monitoring.
The methodology integrates multi-sensor data acquisition, wavelet filtering, machine learning
classification, and IoT integration, showcasing its capacity to enhance diagnosis and facilitate
prompt interventions in paediatric healthcare.

Multivariate Adaptive Regression Splines (MARS), Softmax Regression, and Histogram-
Based Gradient Boosting are some of the most complex statistical and machine learning
techniques applied by Narla et al. (2021) in analyzing the predictiveness of healthcare
modeling within the cloud computing environment. The researchers found that integrating the
three algorithms is significant to provide higher computational performance and better
prediction accuracy, depending on the large size of healthcare data. The proposed model
solves the problem of scaling and real-time analysis and hence has vast applications in
predictive analytics of cloud-based medical system.

Peddi et al. (2018) demonstrate advancement in geriatric care by using machine learning
algorithms and artificial intelligence in applications to predict the risks of senior patients
developing dysphagia, delirium, and falls. Their work focuses on using predictive models to
enhance early diagnosis and intervention tactics in improving patient safety and results. This
paper addresses the growing need for data-driven strategies in the management of issues in
geriatric health with the use of sophisticated computational methodologies.

Peddi et al. (2019) explored the use of AI and machine learning algorithms in fall prevention,
management of chronic diseases, and the prediction of applications in healthcare, specifically
in geriatric care. Their study puts forward how recent computational methods can be
integrated into early intervention tactics, increase patient safety, and improve health
outcomes. This paper demonstrates how predictive analytics can transform geriatric
healthcare by underlining its importance in meeting the wide-ranging demands of elderly
people.

Valivarthi et al. (2021) discuss the integration of cloud computing and artificial intelligence
techniques to create advanced healthcare prediction models. To enhance the accuracy and
efficiency of predictions, the study employs ABC-ANFIS (Artificial Bee Colony with
Adaptive Neuro-Fuzzy Inference System) and BBO-FLC (Biogeography-Based Optimisation
with Fuzzy Logic Control). This research discusses how evolutionary algorithms and fuzzy
logic systems can be integrated to solve complex healthcare problems and improve cloud-
based decision-making.

Narla et al. (2019) make use of the LSTM networks along with ACO for disease prediction
and explore cloud computing in combination with healthcare, showing how this method
combines predictive modelling power of LSTM with optimisation skills of ACO to get
improved accuracy as well as scalability. This innovative approach addresses problems in
healthcare, as it has enabled proactive health management and appropriate disease prediction
under cloud-based setups.

A Smart Healthcare Framework with cloud integration by Narla et al. (2019) uses LightGBM
for fast data processing, multinomial logistic regression for health risk analysis, and self-
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organising maps (SOMs) for data patterns. The scalable, real-time technology improves
healthcare decision-making by centralising data storage and analysis. The framework detects
health hazards and enables personalised patient care with a 95% AUC, outperforming
standard models in accuracy and recall. It allows immediate interventions and improves
healthcare results through accurate and individualised treatment regimens by incorporating
powerful machine learning algorithms.

3. METHODOLOGY

The methodological section delineates the methodical technique employed to accomplish the
research goals. To give readers a thorough understanding of the methods and procedures
involved in constructing Butterworth filters for the purpose of maximizing signal clarity in
Internet of Things-based Structural Health Monitoring (SHM) systems, this section is broken
down into multiple subtopics.

3. 1. System Architecture

3.1.1 IoT-Based SHM System Design

A number of basic parts are included within the plan of an internet of Things-based SHM
system, including as sensors, central processing units, information gathering units, and
communication modules. The sensors are positioned on the structure in a vital way to
accumulate data on temperature, stresses, and vibrations, among other characteristics. Data
acquisition units get input from these sensors, compile it, and send it to a central processing
unit for investigation.
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Figure 1. IoT based system Architecture

An architecture of the system for gathering and processing data is shown in the figure above.
The temperature, humidity, strain gauge, accelerometer, and other sensors are the first ones in
the system that provide data to a Data Acquisition Unit (DAU). After data collection, the
DAU sends the information to the CPU over various communication modules, such as Wi-Fi,
Zigbee, or LoRa. The data is first processed using a Butterworth filter inside the CPU and
then saved in a data storage module. Following that, machine learning and statistical analysis
methods are used for the stored data. Ultimately, the analysis's findings are shown on a
dashboard for end users to interact with and comprehend.

3.1.2. Components of the System:

In SHM systems leveraging IoT, sensors like temperature, humidity, strain gauges, and
accelerometers gather data on structural behavior, moisture levels, and material qualities.
Communication modules utilizing LoRa, Zigbee, and Wi-Fi technologies ensure secure and
efficient data transmission to the CPU. The CPU manages data processing, employing signal
processing methods like Butterworth filters and advanced analytics such as machine learning
to assess structural health and trigger maintenance recommendations.

3.1.3 Sensor Selection and Placement:

Accurate SHM requires careful sensor selection and strategic placement based on structural
analysis, historical damage reports, and consideration of environmental factors. Sensors track
temperature variations, material deformation, and vibrations to identify potential structural
weaknesses and monitor environmental influences impacting structural integrity over time.

3.1.4 Data Acquisition and Transmission:

Data acquisition devices collect real-time sensor data, converting analog signals to digital for
processing. Communication modules like Wi-Fi, Zigbee, or LoRa transmit data to a central
server for analysis based on factors such as data rate, range, and power consumption,
ensuring reliable and efficient data transmission in diverse monitoring environments

Key Considerations:

Sampling Rate:

�� − 1
��

(1)

where �� is the sampling period.

Data Integrity:

● Error-Checking and Correction:
Typically involves algorithms like Cyclic Redundancy Check (CRC) or Hamming
code.

● CRC Polynomial:
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��� � − �� + �� + ⋯ + 1 (2)

● Hamming Code:
For a binary code, it adds redundancy bits � to a data word � :

� − � + � (3)

where � is the total number of bits.

Power Management:

● Energy Consumption:

� − � × � (4)

where � is energy, � is power, and � is time.

● Energy Harvesting (e.g., Solar Power):

������ − � × � × � (5)

where � is the efficiency, � is the area of the solar panel, and � is the solar irradiance.

Pre-Processing of Data:

Noise Reduction

● Moving Average Filter:

�[�] − 1
� �=0

�−1
 � �[� − �] (6)

where �[�] is the filtered signal, �[�] is the input signal, and � is the number of points in the
moving average.

● Thresholding:

��ℎ���ℎ����� [�] − {�[�] �� �[�] > � 0 �� �[�] ≤ � ( 7)

where � is the threshold value.

Data Normalization:

● Normalization to [0,1] :

�' − �−����
����−����

(8)

● Normalization to [ − 1,1] :

�' − 2 �−����
����−����

− 1 (9)
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where ���� and ���� are the minimum and maximum values of the dataset, respectively.
Outlier Detection

● Z-score:

� − �−�
�

(10)

where � is the mean and � is the standard deviation.

● Interquartile Range (IQR):

��� − �3 − �1 (11)

where �1 is the first quartile and �3 is the third quartile.

● Outliers are typically defined as:

� < �1 − 1.5 × ��� �� � > �3 + 1.5 × ��� (12)

Design of Butterworth Filters:

Transfer Function of Butterworth Filter:

� � − 1

1+ �
��

2�
(13)

where �� is the cutoff frequency, � is the filter order, and � is the complex frequency
variable.

Design Steps

1. Choosing Filter Order:

● Higher order � results in a steeper roll-off.

2. Cutoff Frequency �� :

● Selected based on the required bandwidth and noise characteristics.

3. Poles Calculation:

● Poles of the Butterworth filter are located on a circle in the left half of the s-plane:

�� − ���
2+1
2� �+7

7 (14)

for � − 0,1, …, � − 1.

Bilinear Transformation (for Digital Filter Design)

● Bilinear Transformation:

� − 2
�

1−�−1

1+�−1 (15)
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where � is the sampling period and � is the �-domain variable.

3.2.2.2 Filter Order Selection

Performance Prerequisites

1. Frequency Response of Butterworth Filter:

The transfer function �(�) of an �-th order Butterworth filter is given by:

� � − 1

1+ −
��

20 (16)

Where:

● � is the complex frequency variable.

● �� is the cutoff frequency.

● � is the filter order.

The filter's roll-off becomes steeper as � increases.

Higher � values lead to better attenuation of frequencies beyond ��.

Computational Resources:

Digital Filter Realization:

For a digital Butterworth filter, the number of coefficients increases with the filter order. The
general form of a digital filter can be represented as:

�[�] −
�−0

�
 � ���[� − �] −

�−1

�
 � ���[� − �] (17)

Where:

● �[�] is the input signal.

● �[�] is the output signal.

● �� and �� are filter coefficients.

● � is the filter order.

Higher order � requires more �� and �� coefficients.

This increases the computational complexity and memory usage.

4. Adaptive Filtering Techniques
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4.1 Concept of Adaptive Filtering

Adaptive filtering involves the continuous modification of filter parameters to better suit the
characteristics of incoming signals. This approach allows the filter to dynamically adjust to
changing signal properties, ensuring optimal performance across various scenarios.

Benefits of Adaptive Filtering:

Flexibility: Adaptive filters excel in managing fluctuating signal conditions without user
intervention. This adaptability makes them ideal for environments where signal parameters
are constantly changing, such as shifting external noises or dynamic structural conditions in
real-time monitoring systems.

Enhanced Performance: By continually adapting to the signal, adaptive filters significantly
improve signal clarity and noise reduction. This results in clearer and more accurate data,
crucial for applications requiring high precision, like structural diagnostics and
telecommunications.

Real-Time Adaptation: The core strength of adaptive filtering is its ability to adjust filter
parameters instantly. This real-time adaptation ensures high performance without manual
configuration changes or periodic recalibration, even as the signal environment evolves.

Figure 2. Real-Time adaptive filtering process
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Filtering an incoming signal is the first step in the procedure. Any type of data that needs to
be processed, including audio, video, and sensor data, could constitute this signal. After
analyzing the incoming signal, pertinent features are retrieved. These attributes could consist
of particular amplitudes, frequencies, or other qualities that are crucial to the filtering
procedure. The system decides how to modify the filter parameters based on the features that
are extracted. Making sure the filter is properly designed to process the incoming signal
efficiently requires taking this critical step. Based on the modifications found in the previous
phase, the filter settings are modified. In this way, the filter's ability to continuously adjust to
the properties of the incoming signal is guaranteed. With the modified filter settings, the
adaptive filter processes the incoming signal. The adaptive filter can successfully filter out
noise and other undesirable elements since it is made to change its parameters in real time
dependent on the properties of the signal. Ultimately, an upgraded signal that has been
refined to reduce noise and boost quality is generated by the adaptive filter. As appropriate,
this improved signal can then be used for additional processing or analysis.

4.2 Implementation of Adaptive Butterworth Filters

The intrinsic smooth frequency response of adaptive Butterworth filters allows them to
instantly adjust to shifting signal conditions. Typically, the implementation uses algorithms to
analyze incoming signals and modify the cut-off frequency and sequence of the filter to
maintain optimal performance. The Least Mean Squares (LMS) algorithm, which minimizes
the error between the expected result and the actual filtered signal by fine-tuning the filter
coefficients based on real-time data inputs, is one well-liked technique for this modification.

4.2.1 LMS Algorithm

Adaptive filtering relies heavily on the Least Mean Squares (LMS) algorithm because of its
ease of use and reliable results in a range of signal conditions. In order to reduce the mean
square error between the desired signal and the filter's output, it works by continuously
updating the filter coefficients. This method entails "learning" from each new set of data by
computing the gradient of the error with respect to the filter coefficients and then modifying
those coefficients in the opposite direction of the gradient. Because of its efficiency, the LMS
algorithm is especially well-suited for real-time applications where response times and
processing capacity are crucial.

Least Mean Squares (LMS) Adaptive Filter Algorithm

The Least Mean Squares (LMS) algorithm is a fundamental adaptive filtering technique
commonly used in signal processing applications. The LMS algorithm adapts the filter
coefficients to minimize the error between the desired signal and the actual output of the filter.
Below is an explanation of the LMS algorithm, illustrated with the given Python code.

Algorithm Explanation

The LMS filter algorithm iteratively adjusts the filter weights to minimize the error between
the desired signal and the filter output. Here’s a step-by-step breakdown of the process:
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1. Input Parameters:

● ' � ": The input signal array.

● ' � ': The desired signal array, which the output signal should approximate.

● 'mu': The step size or learning rate, which controls the speed of convergence.

● ' � ': The order of the filter, determining the number of filter coefficients.

2. Initialization:

● ' � = ��. �����(�) ': Initializes the filter weights to zero.

● ' � = ��. �����(��� (�))' : Initializes the output signal array to zero.

● ' � = �. zeros(len (�))' : Initializes the error signal array to zero.

4. Output:

● The function returns the filter output � , the error signal � , and the final filter
weights �.

The main loop of the LMS filter algorithm iterates over the input signal starting from the �-
th sample to ensure there are enough previous samples to form the input vector �� . For each
iteration, the input vector �� is constructed by taking the current sample and the � − 1
preceding samples from the input signal �. The filter output �[�] is then calculated as the dot
product of the current weight vector � and the input vector �� . The error signal �[�] is
computed by subtracting this filter output from the desired signal �[�] . Finally, the weight
vector � is updated by adding a term proportional to the error signal, the input vector, and the
step size � , specifically � = � + 2 ⋅ � . �[�] ⋅ �� . This iterative process refines the filter
weights to minimize the error, thereby adapting to the signal conditions over time.

In the context of structural health monitoring (SHM), the LMS filter can be used to enhance
the clarity of signals obtained from sensors. By minimizing the error between the measured
and desired signals, the LMS algorithm helps in reducing noise and improving the accuracy
of the data used for monitoring the health of structures. This process ensures more reliable
detection of anomalies and potential issues in structural integrity, ultimately contributing to
better maintenance and safety of critical infrastructure.

a. Constructing the Input Vector

The input vector �� for the current sample � is constructed from the current and previous
� − 1 samples of �.

�� = [� � , � � − 1 , …, � � − � + 1 ]� (18)

b. Calculating the Filter Output
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The filter output �[�] is calculated as the dot product of the weight vector � and the input
vector ��−

� � = ���� (19)

Where:

y_i [n]=∑_(i=0)^(N-1) w_i x[n-i] (20)

c. Computing the Error Signal

The error signal �[�] is the difference between the desired signal �[�] and the filter output
�[�].

� � = � � − � � (21)

d. Updating the Filter Weights

The weights are updated based on the error signal, the input vector, and the step size �. The
update rule is:

� = � + 2�� � �� (22)

Where:

�� = �� + 2�� � � � − 1 ��� � = 0,1, …, � − 1 (23)

Summary of Equations

Putting it all together, the equations for each iteration � from � to the length of � are

1. Input vector: �� = [� � , � � − 1 , …, � � − � + 1 ]2 (24)

2. Filter output � � = ���� =
�−0

�−1
 � ���[� − 1] (25)

3. Error signal: � � = � � − � � (26)

4. Weight update � = � + 2�� � �� (27)

Initialization: We start with zero weights, and initialize the output and error vectors to zero.

Input Vector Construction For each sample � starting from �, we construct the input vector
�� using the current and previous � − 1 samples.

Filter Output Calculation: The output �[�] is computed as the data product of the current
weights and the input vector, representing the filter's estimate of the desired signal.

Error Signal Calculation: The error signal e [�] measures the difference between the actual
desired signal and the filter's output.
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Weight Update: The weights are adjusted to minimize the error signal, using a step size � that
controls the learning rate of the algorithm. The term 2��[�]�� is added to the current weights
to update them for the next iteration.

This iterative process continues until all samples of the input signal � have been processed,
resulting in the final weight vector �, the filtered output �, and the error signal �.

5. Hybrid Filtering Techniques

5.1 The Hybrid Filtering Concept

Hybrid filtering enhances robust signal processing in structural health monitoring (SHM) by
combining many techniques to capitalize on their advantages and mitigate their disadvantages.
By focusing on distinct signal components, the integration of Butterworth and Kalman filters
enhances noise reduction and data quality. This approach is flexible enough to adjust to
different levels of noise and signal distortions, which makes it appropriate for a range of
monitoring scenarios where environmental and operational factors affect sensor data.

5.2 Hybrid Butterworth-Kalman Filter

The Butterworth-Kalman hybrid filter reduces high-frequency noise first with a Butterworth
filter and then employs a Kalman filter for accurate signal estimation. Good noise attenuation
and precise signal tracking are guaranteed by this combination. Raw data is smoothed by the
Butterworth filter, while data clarity and dependability are improved by the Kalman filter,
which dynamically modifies its estimations. This method is essential for identifying minute
alterations in structural integrity, which is necessary for SHM system early warning and
preventative maintenance.

5.2.1 Kalman Filter Overview

A popular recursive approach for determining the state from noisy observations in dynamic
systems is the Kalman filter. It works in two stages: update and prediction. In the prediction
step, the filter makes predictions about the present state based on the past state and a model of
the system dynamics. Subsequently, in the update stage, the Kalman filter improves the state
estimate by incorporating the most recent measurement and adjusting it for uncertainty.
Because of this approach, the filter may continuously improve its predictions based on fresh
information, which makes it very useful in situations where noise characteristics can vary,
like structural health monitoring. The Kalman filter is a crucial part of the hybrid filtering
strategy because it can instantly adjust to new measurements, improving the monitoring
system's accuracy and dependability.

Kalman Filter Algorithm

The Kalman filter is a powerful and widely used algorithm for estimating the state of a
dynamic system from noisy measurements. It is particularly effective in applications that
require real-time signal processing and state estimation. Below is an explanation of the
Kalman filter algorithm, illustrated with the given Python code.

Algorithm Explanation
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The Kalman filter operates in two main steps: prediction and update. The prediction step
estimates the current state of the system and its uncertainty based on the previous state. The
update step then corrects this estimate using the new measurement. This process iteratively
refines the state estimate, minimizing the error over time.

1. Input Parameters:

● ' � ': The sequence of measurements.

● ' F: The state transition matrix, which models how the state evolves from one time
step to the next.

● ⋅ � : The observation matrix, which maps the true state space into the observed
space.

● � ': The process noise covariance matrix, representing the uncertainty in the model.

● ' � : The measurement noise covariance matrix, representing the uncertainty in the
measurements.

● ' �0 : : The initial state estimate.

● ��' : The initial error covariance matrix.

2. Initialization:

● � = �0' : Sets the initial state estimate.

● � = �0' : Sets the initial error covariance matrix.

● 'x_estimates = [] : Initializes an empty list to store the state estimates.

● Update Step:

● � = � H.T e np.linalg.inv(H P H.T +�) : Calculates the Kalman gain, which
balances the trust between the prediction and the new measurement.

● � = � + � e( �� − � e �) : Updates the state estimate using the Kalman gain and
the new measurement.

● � = � − � H � : Updates the error covariance matrix to reflect the new state
estimate.

● ' � _estimates .append(x) : Stores the updated state estimate.

3. Output:

● 'return np.array(x_estinates) : Returns the list of state estimates as a NumPy array.

The main loop of the Kalman filter algorithm iterates over each measurement �� in the
sequence of observations. During each iteration, the algorithm performs a prediction step to
estimate the next state and its uncertainty. The state estimate � is predicted using the state
transition matrix � , which models how the state evolves over time. Concurrently, the error
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covariance matrix � is updated by propagating it through the state transition matrix and
adding the process noise covariance matrix �. This update reflects the increased uncertainty
in the prediction due to process noise, setting the stage for the subsequent update step where
the measurement will refine these predictions.

In the context of structural health monitoring (SHM), the Kalman filter can be utilized to
estimate the state of a structure based on noisy sensor data. The recursive nature of the
Kalman filter allows for real-time updating of state estimates, which is crucial for monitoring
the integrity of structures such as bridges, buildings, and dams. By accurately estimating the
state and reducing the impact of noise, the Kalman filter enhances the reliability of the SHM
system, facilitating timely maintenance and preventing structural failures. This algorithm is
particularly valuable when combined with other filtering techniques, such as the Butterworth
filter, to further improve signal clarity and accuracy.

a. Prediction Step

The prediction step involves predicting the next state and the error covariance matrix based
on the current state estimate and the state transition model.

● State prediction:

�− = �� (28)

● Error covariance prediction:

�− = ���⊤ + � (29)

b. Update Step

The update step involves updating the predicted state and the error covariance matrix based
on the new measurement ��.

● Compute the Kalman gain:

� = �−�� � −�� + � −1 (30)

● Update the state estimate:

� = �− + � �� − ���− (31)

● Update the error covariance matrix:

� = � − �� �− (32)

Summary of Equations

Putting it all together, the equations for each iteration � are:

1. Prediction Step:

● State prediction:
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��
− = ��−1 (33)

● Error covariance prediction:

��
− = ���−1�� + � (34)

2. Update Step:

● Compute the Kalman gain:

�� = ��
−�� ���

−�� + � −1 (35)

● Update the state estimate:

�� = ��
− + �� �� − ���

− (36)

● Update the error covariance matrix:

�� = � − ��� ��
− (37)

Initialization: The algorithm starts with the initial state estimate �0 and the initial error
covariance matrix �0 -

Prediction Step: For each measurement �� , the algorithm first predicts the next state ��
−and

the error covariance matrix ��
− using the state transition model � and the process noise

covariance �.

Update Step: The algorithm then updates the predicted state and error covariance matrix
using the new measurement �� . The Kalman gain �� is computed to determine the weight
given to the new measurement. The state estimate �� is updated by adding the measurement
residual �� − ���

−called by the Kalman gain. The error covariance matrix �� is updated to
reflect the reduced uncertainty after incorporating the new measurement.

State Estimates Storage: The updated state estimate �� is started in the list ���������� .

This iterative process continues for all measurements in sequence 2, resulting in a series of
state estimates that reflect the best estimate of the system's state at each time step, accounting
for both process and measurement noise.

5.3 Implementation of Hybrid Filter

The signal is first processed through a Butterworth filter as part of the sequential approach to
implementing the hybrid filter. The majority of the undesired signal changes must be
attenuated during this critical stage in order to preserve the integrity of the underlying signal
properties and eliminate high-frequency noise. After this preliminary filtering, the signal that
has been preprocessed is passed into a Kalman filter. By constantly adapting to the noise
characteristics based on incoming data, the Kalman filter employs a probabilistic
methodology to optimally estimate the true state of the signal. This combination is especially
helpful in dynamic contexts where noise characteristics might change over time, as it not only
smoothes the signal but also adjusts to changes in signal behavior. For applications needing
great accuracy and dependability in signal processing, the hybrid configuration makes use of
the advantages of both filtering approaches.
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6. Performance Evaluation

6.1 Metrics for Evaluation

Filtering algorithms are thoroughly evaluated using a variety of measures. The degree to
which a filter strengthens the signal against background noise is indicated by the Signal-to-
Noise Ratio (SNR). A lower mean squared error (MSE), which is determined by comparing
the estimated and true values, indicates a higher degree of signal estimation accuracy.
Furthermore, a filter's computational complexity is reflected in its memory usage and
processing time, which is important for real-world application, particularly in systems with
constrained computational power. In applications such as structural health monitoring in
dynamic situations, these metrics aid in approach selection and optimization by evaluating
the efficacy of a filter.

Table 1: Comparison of Filtering Techniques

Metric Butterworth Filter Chebyshev Filter Elliptical Filter

SNR Improvement High Medium Low

MSE Reduction Low Medium High

Complexity Low Medium High

This table compares the performance of Butterworth, Chebyshev, and Elliptical filters based
on three metrics: SNR improvement, MSE reduction, and complexity. Butterworth filters
exhibit high SNR improvement and low complexity compared to Chebyshev and Elliptical
filters. However, they may have lower MSE reduction compared to Elliptical filters.

6.1.2 Mean Squared Error (MSE)

MSE quantifies the difference between the actual and desired signals. A lower MSE indicates
better filtering performance.

��� = 1
� �=1

�
 � �� − ��

∧ 2 (38)

MSE Calculation:

By averaging the squares of the discrepancies between the filtered and actual signals, the
Mean Squared Error (MSE) is a crucial metric for assessing the accuracy of the filter. It
measures how well a filter effectively captures the variance and bias in filter mistakes,
maintaining the integrity of the original signal. Higher accuracy and precision in signal
processing are indicated by lower MSE values. Summing the squares of the differences
between the true and filtered values and dividing the result by the total number of data is how
MSE is calculated. In order to ensure that chosen filters reduce distortion and enhance signal
fidelity, this metric is essential for comparing filtering schemes.
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Computational Complexity:

Since it directly affects the efficacy of real-time filtering systems, computational efficiency is
essential. Analyzing filter algorithm complexity contributes to a better understanding of
processing time and resource consumption. Important factors to take into account include
hardware capabilities, filter order, and algorithm efficiency. While effective algorithms
reduce processing delay, higher filter orders may cause performance to deteriorate. What is
possible is determined by hardware limits. For applications such as dynamic structural health
monitoring, computational efficiency guarantees the system's instantaneous handling of real-
time data streams.

Table 2: Computational Complexity Analysis

Filter Type Filter Order Computational Complexity

Butterworth 4 Low

Chebyshev 6 Medium

Elliptical 8 High

This table provides an analysis of the computational complexity of Butterworth, Chebyshev,
and Elliptical filters based on their respective filter orders. As the filter order increases, the
computational complexity also increases. Butterworth filters typically have lower
computational complexity compared to Chebyshev and Elliptical filters, making them more
suitable for real-time applications where computational resources are limited.

Comparative Analysis:

A review that compares the performance of Butterworth, Chebyshev, and Elliptical filters
makes use of measurements like Signal-to-Noise Ratio (SNR) and Mean Squared Error
(MSE). Every kind of filter has distinct qualities. Butterworth filters provide a flat frequency
response in the passband, which is perfect for minimizing signal distortion. Elliptical filters
have the sharpest roll-off but can introduce large ripple. Chebyshev filters offer a sharp roll-
off but with passband ripple. The evaluation provides insights into which filter best meets the
performance and usability objectives of a certain application by taking into account factors
including filtration capabilities, practicality, computing requirements, and flexibility to
changes in signal and noise levels.

7. Result and Discussion:

Butterworth filters have been applied to Internet of Things (IoT)-based Structural Health
Monitoring (SHM) systems, showing notable increases in signal clarity—a crucial
component of precise and trustworthy structural evaluations. The main objective of this work
was to compare Butterworth filters with Elliptical and Chebyshev filters. The findings
showed that Butterworth filters, which are distinguished by their passband's maximum flat
frequency response, successfully reduced signal distortion and offered better signal quality.
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Butterworth filters routinely beat Elliptical filters, which exhibit both passband and stopband
ripples, and Chebyshev filters, which have passband ripples, according to performance
criteria like Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE).

Because they have a steeper roll-off and stronger attenuation of unwanted frequencies—both
crucial for filtering out noise without compromising the integrity of the original signal—
higher-order Butterworth filters proved to be very effective. For SHM systems, where precise
structural anomaly detection depends on the quality of sensor data, this feature is essential.

Another area of interest for this research was adaptive filtering methods. Through the
implementation of dynamic real-time filter parameter adjustments, these strategies enabled
the SHM system to sustain excellent signal clarity in the face of changing environmental
conditions. This flexibility is essential for real-world applications where signal quality might
be impacted by outside variables like humidity and temperature.

In order to capitalize on the advantages of various filtering techniques, the study also
investigated the integration of Butterworth filters with other filtering types, such as Kalman
filters. This hybrid technique demonstrated the potential to improve signal processing
capabilities even further, increasing the robustness and dependability of SHM systems.

All things considered, the results highlight how crucial Butterworth filters are to raising the
effectiveness of Internet of Things-based SHM systems. If these filters are successfully
implemented, structural health evaluations may become more accurate, which will ultimately
improve important infrastructure's durability and safety. Further research should focus on
improving these adaptive algorithms and investigating real-world applications in diverse
structural monitoring contexts.

Table 3 Filter Performance Comparison

S.No Filter Type SNR (dB) MSE

1 ButterWorth 35 0.002

2 Elliptical 30 0.005

3 Chebyshev 32 0.004

The above Table 3 compares the performance of Butterworth, Elliptical, and Chebyshev
filters based on Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE). Butterworth
filters demonstrate superior performance with the highest SNR of 35 dB and the lowest MSE
of 0.002. In contrast, Elliptical filters have an SNR of 30 dB and MSE of 0.005, while
Chebyshev filters show an SNR of 32 dB and MSE of 0.004. This highlights the effectiveness
of Butterworth filters in enhancing signal clarity in IoT-based Structural Health Monitoring
systems.
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Fig 3: Filter Performance Comparison

The above Fig 3 Bar Chart compares the Signal-to-Noise Ratio (SNR) of Butterworth,
Elliptical, and Chebyshev filters. Butterworth filters show the highest SNR at 35 dB,
indicating the best performance in signal clarity. Chebyshev filters follow with an SNR of 32
dB, while Elliptical filters have the lowest SNR at 30 dB. This comparison highlights the
superior capability of Butterworth filters in reducing signal distortion in IoT-based Structural
Health Monitoring systems.
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Fig 4: Pie Chart Comparison

The above Fig 4 Pie Chart compares the Mean Square Error (MSE) of Butterworth, Elliptical,
and Chebyshev filters. Butterworth filters exhibit the lowest MSE at 0.002, indicating the
highest accuracy in signal processing. Chebyshev filters follow with an MSE of 0.004, and
Elliptical filters have the highest MSE at 0.005. This demonstrates the superior performance
of Butterworth filters in minimizing signal errors in IoT-based Structural Health Monitoring
systems.
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Fig 5: Line Chart for Effect of Higher-Order Butterworth Filters on SNR Over
Environmental Conditions

The above Fig 5 Line Chart illustrates the impact of different filter orders (2, 4, and 6) on the
Signal-to-Noise Ratio (SNR) across various environmental conditions. The x-axis represents
the environmental conditions, including Low Humidity, Medium Humidity, High Humidity,
Low Temperature, Medium Temperature, and High Temperature. The y-axis indicates the
SNR values in decibels (dB). The chart shows three lines, each corresponding to a filter order,
with SNR values for each environmental condition. Generally, higher filter orders lead to
improved SNR across all environmental conditions, as demonstrated by the upward trend of
SNR values with increasing filter order.

8. CONCLUSION AND FUTURE SCOPE:

With their special qualities, butterworth filters offer an effective way to improve signal clarity
in SHM systems that are based on the Internet of Things. Higher-order Butterworth filters, as
demonstrated by this work, greatly lower noise and enhance sensor data quality—two factors
that are essential for precise structural health evaluations. Additional advantages come from
adaptive filtering algorithms since they ensure consistent performance by adapting to real-
time changes in the signal. The comparison analysis with different filters demonstrates how
much better the Butterworth filter is at reducing distortion while preserving computational
efficiency. These systems are strengthened by the incorporation of hybrid filtering techniques,
which improve signal processing even more. Through the creation of more dependable and
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efficient SHM systems, safer infrastructure management is ensured by this research. Future
studies should concentrate on creating sophisticated adaptive filtering algorithms and
investigating practical uses for these improved SHM systems in diverse infrastructure
monitoring
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