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Abstract 
Urysohn’s Lemma is a main result in topology that establishes conditions for the existence of 
continuous functions between topological spaces which states that in a normal space, any 
two disjoint closed sets can be separated by a continuous function. This lemma has 
significant applications in functional analysis, metric space theory, and algebraic topology. 
This paper explores the theorems, implications, Examples and applications. 

 Introduction 
Topology is a branch of mathematics that studies some properties of spaces under 
continuous transformations. One of the fundamental results in topology is Urysohn’s 
Lemma, which proves a method for constructing continuous functions in normal spaces. 
This lemma is essential for proving deeper results such as the Urysohn Metrization Theorem 
and Tietze Extension Theorem. 
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Statement of Urysohn’s Lemma: 
Let X be a normal topological space and let A and B be two disjoint closed subsets of X. Then, 
there exists a continuous function f: X → [0,1] such that: 
f(x) = 0 for all x ∈ A, 
f(x) = 1 for all x ∈ B, 
0 ≤ f(x) ≤ 1 for all x ∈ X. 

PROOF : 
The proof of Urysohn’s Lemma is constructive and involves the following key steps: 

Step 1: Use normality to construct nested open sets separating A and B. 
Step 2: Define a sequence of open sets indexed by rational numbers in (0,1) that 
gradually separate A and B. 
 Step 3: Assign function values to points based on their position relative to these open 
sets. 
 Step 4: Verify continuity using the properties of normal spaces. 
Applications of Urysohn’s Lemma: 
Urysohn’s Lemma is a fundamental result in topology that guarantees the existence of 
continuous functions separating closed sets in normal spaces. This property has 
numerous applications in various fields of mathematics, including metric space theory, 
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functional analysis, and differential geometry. Below are some key applications of 
Urysohn’s Lemma. 
Tietze Extension Theorem 
Urysohn’s Lemma plays a crucial role in proving the Tietze Extension Theorem, which 
states that if a normal space has a continuous function defined on a closed subset, then 
it can be extended to the entire space without losing continuity. This theorem is useful in 
functional analysis and manifold theory. 
Partition of Unity 
In differential geometry and topology, Urysohn’s Lemma is used to construct partitions 
of unity. A partition of unity is a collection of continuous functions that help in defining 
smooth structures on manifolds, allowing for the extension of local functions to global 
functions while maintaining smoothness and compatibility. 
Functional Analysis 
Urysohn’s Lemma is essential in functional analysis, particularly in the study of Banach 
and Hilbert spaces. It provides a way to construct continuous functions that separate 
points and sets, which is crucial in the development of function spaces and dual space 
theory. 
Compactifications 
The lemma is used in constructing compactifications of spaces, such as the Stone-Čech 
compactification. By using continuous functions as separating tools, mathematicians can 
embed non-compact spaces into compact ones, allowing for the extension of properties 
that hold in compact spaces. 
Urysohn Metrization Theorem 
One of the most significant applications of Urysohn’s Lemma is in the proof of the 
Urysohn Metrization Theorem. This theorem states that a topological space is 
metrizable if and only if it is a regular space with a countable basis. Urysohn’s Lemma is 
used to construct a family of continuous functions that help define a compatible metric. 
Proof of Urysohn's Metrization Theorem 
Statement of Urysohn's Metrization Theorem 
A topological space X is metrizable (i.e., there exists a metric that induces its topology) if 
and only if it is regular and has a countable basis. 
Proof: 
We prove the theorem in two parts: 
Part1: If X is Metrizable, then it is Regular and has a Countable Basis 
1) Suppose X is metrizable with a metric d. 
2) Regularity follows because in a metric space, given a closed set F and a point x ∉ F, we 
can construct disjoint open balls around x and F. 
3)If X is second-countable (i.e., has a countable basis), then its topology has a countable 
basis, which follows from the properties of separability in metric spaces. 
Part 2: If X is Regular and has a Countable Basis, then it is Metrizable 
1) Let {Un} be a countable basis for X. 
2)Using Urysohn's Lemma, construct a family of continuous functions that separate 
points. 
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3) Define a metric d based on these functions, ensuring that it induces the topology of X. 
4)Verify that d satisfies the properties of a metric and generates the original topology. 
Example of Urysohn’s Lemma 
Urysohn’s Lemma states that in a normal topological space, two disjoint closed sets can 
be separated by a continuous function. This result is essential in topology and functional 
analysis, as it allows for the construction of continuous functions with specific 
properties. Below is a concrete example illustrating the application of Urysohn’s Lemma. 
Example: Urysohn Function on the Real Line 
Consider the real number line R with the standard topology. Let us define two disjoint 
closed sets: 
A = {x ∈ R | x ≤ 0}, which consists of all non-positive real numbers. 
 B = {x ∈ R | x ≥ 2}, which consists of all real numbers greater than or equal to 2. 
Since R with the standard topology is a normal space, Urysohn’s Lemma guarantees the 
existence of a continuous function f: R → [0,1] such that: 
f(x) = 0 for all x in A. 
 f(x) = 1 for all x in B. 
 0 ≤ f(x) ≤ 1 for all x in R. 
Constructing the Function 
A possible function satisfying these conditions is defined as follows: 
If x ≤ 0, then f(x) = 0. 
If 0 < x < 2, then f(x) = x / 2. 
If x ≥ 2, then f(x) = 1. 
This function is continuous because: 
For x ≤ 0, it is constantly 0. 
For x ≥ 2, it is constantly 1. 
For 0 < x < 2, it is a linear function, which is continuous. 
At x = 0 and x = 2, the function transitions smoothly without discontinuity. 
Examples of Spaces that Satisfy the Theorem (Metrizable Spaces) 
The Euclidean Space ℝⁿ 
The standard topology on ℝⁿ is induced by the Euclidean metric. It is regular and has a 
countable basis (e.g., open balls with rational radii and centers at rational points). 
The Cantor Space {0,1}ⁿ 
This is the space of all infinite binary sequences with the product topology (from the 
discrete topology on {0,1}). It is regular and has a countable basis (sets defined by fixing 
finite prefixes of sequences). 
The Sorgenfrey Line ℝ� 
Defined by the topology generated by half-open intervals [a, b). This space has a 
countable basis and is regular. It can be metrized using a modified metric d(x, y) = |x - y| 
if we restrict to appropriate neighborhoods. 
The Space of Continuous Functions C([0,1], ℝ) with the Uniform Topology 
The metric d(f,g) = sup{x ∈ [0,1]} |f(x) - g(x)| induces a topology satisfying the 
conditions of the Urysohn theorem. 
Examples of Spaces that Fail the Theorem (Non-Metrizable Spaces) 
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The Long Line 
This is a space that is locally like ℝ but is too 'large' to have a countable basis. 
The Uncountable Fort Space 
Defined on an uncountable set with special open sets, failing to have a countable basis. 
The Cofinite Topology on an Uncountable Set 
Open sets are either cofinite or empty, failing regularity conditions. 
Applications of Urysohn Metrization Theorem: 
The Urysohn Metrization Theorem is a fundamental result in topology that provides 
necessary and sufficient conditions for a topological space to be metrizable. It states that 
a topological space is metrizable if and only if it is regular and has a countable basis. 
This theorem has widespread applications in mathematical analysis, functional spaces, 
and differential geometry. Below are some key applications of the Urysohn Metrization 
Theorem. 
 
 Metrization of Topological Spaces 
The primary application of the Urysohn Metrization Theorem is in determining whether 
a given topological space can be equipped with a metric. This allows for the study of 
spaces using distance functions, enabling the use of metric-based techniques such as 
convergence, continuity, and compactness analysis. 
 Functional Analysis and Banach Spaces 
In functional analysis, many important function spaces are metrizable due to the 
Urysohn Metrization Theorem. For example, Banach and Hilbert spaces are metrizable, 
which allows for rigorous analysis of function convergence, compact operators, and 
completeness in infinite-dimensional spaces. 
 General Topology and Compactifications 
The theorem helps in the study of compactifications of topological spaces, such as the 
Stone-Čech compactification. Metrizable spaces have well-behaved compactifications, 
which are used in various areas of analysis and topology. 
 Differential Geometry and Manifolds 
Many important manifolds, such as smooth and Riemannian manifolds, rely on 
metrization results to ensure the existence of a compatible metric structure. This is 
essential for defining geodesic distance, curvature, and other geometric properties. 
Probability and Measure Theory 
Metrizable spaces play a crucial role in probability theory, where spaces of probability 
measures are often required to be metrizable for the study of convergence in 
distribution, weak convergence, and functional limit theorems. 

Conclusion 
Urysohn’s Lemma is a cornerstone result in topology that ensures the existence of 
continuous functions separating closed sets in normal spaces. It has far-reaching 
implications in many areas of mathematics, making it a powerful tool for theoretical and 
applied Mathematical research.The Urysohn Metrization Theorem is a significant result in 
topology, with applications spanning multiple branches of mathematics. It contributes a 
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fundamental criterion for metrization, enabling the use of metric space techniques in 
topology, analysis, and geometry. Its impact extends to fields like functional analysis, 
probability, and differential geometry, making it one of the most important theorems in 
mathematical research. 
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